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Fractional order PID control
• 90% are PI/PID type in 

industry. 

YangQuan Chen, Dingyu Xue, and Huifang Dou. "Fractional Calculus and Biomimetic Control". IEEE Int. Conf. on 
Robotics and Biomimetics (RoBio04), August 22-25, 2004, Shenyang, China. 

(Ubiquitous)

Igor Podlubny. “Fractional-order systems and PIlDµ-controllers”. IEEE Trans. Automatic Control,44(1): 208–214, 1999.
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Background and Presentation Contents

 The fractional order controllers have attracted many attentions such as fractional order 
proportional integral derivative (FOPID) controller[1].

 The FOPID has five parameters to tune, which means the FOPID can offer better 
performance at the cost of extra implementation efforts than the regular PID. 

 A tuning method with specification constraints, a specified gain crossover frequency, a 
specified phase margin and the flat phase constraint, is proposed to design the robust 
fractional order proportional integral (FOPI) controller[2], fractional order [proportional 
integral] (FO[PI]) controller[3] and fractional order [proportional derivative] (FO[PD]) 
controller[4].

 However, how to design a robust FOPI/FOPID controller systematically and theoretically 
still is an open question.

[1] Shah, P., and Agashe, S. (2016). Review of fractional PID controller. Mechatronics, volume (38), 29-41.
[2] Luo, Y., Chen, Y.Q., Wang, C.Y., et al. (2010). Tuning fractional order proportional integral controllers for fractional order systems. Journal of Process Control, volume (20), 
823-831
[3] Luo, Y., and Chen, Y.Q. (2009). Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica, volume (45), 2446-2450.
[4] Luo, Y., and Chen, Y.Q. (2012). Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica, volume (48), 2159-2167.



 How to design the satisfactory controller or what specifications should be satisfied ? 

 How to evaluate the performance of one control strategy under fairness comparison conditions?
(i)  The performance indexes of the closed-loop system, such as ITAE, IAE and ISE;

They are  often used for the tuned controllers and different parameters result in different    
conclusions.  
(ii) The comparison of the feasibility regions with design specifications for different controllers.

The feasibility regions offer a potential optimization space and a larger one means a larger
possibility to find the optimal, unique controller.  

For all controlled systems, the following  specifications should be satisfied:
① A specified gain crossover frequency; 
② A specified phase margin;
③ A flat phase constraint, which means that the open-loop phase is a constant around the 

given gain crossover frequency and can show the iso-damping property for the system 
response.

Background and Presentation Contents



Background and Presentation Contents

Based on the discussions above, the remaining questions are:

(1) How to  design a robust fractional order PID controller systematically and 

theoretically when its parameter number is larger than three?

(2) Can the FOPID really outperform IOPID under fairness consideration?
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The Idea of “More Flat Phase” Design
Based on the discussions above, a robust fractional order controller 
should consider the following  specifications :
① A specified gain crossover frequency, ω𝑔𝑔𝑔𝑔; 
② A specified phase margin, 𝜙𝜙𝑚𝑚;

③ A flat phase constraint, 𝒅𝒅𝝋𝝋
𝒅𝒅𝝎𝝎

= 𝟎𝟎.

However, when the parameter number of a robust fractional order PID controller is larger, how 
can we design a robust FOPID systematically and theoretically?
① A specified gain crossover frequency, ω𝑔𝑔𝑔𝑔; 
② A specified phase margin, 𝜙𝜙𝑚𝑚;

③ More flat phase constraints, 

𝑑𝑑𝜑𝜑
𝑑𝑑ω

= 0
⋯

𝑑𝑑(𝑛𝑛)𝜑𝜑
𝑑𝑑ω(𝑛𝑛) = 0

， 𝑛𝑛 is the integer order  > 1.



The Idea of “More Flat Phase” Design

The advantages of the idea of more flat phase design:

 More flat phase constraints means more possibilities that the open-loop phase is closer
to constant and less sensitive to the gain variation for the closed-loop system.

 The number of constraints is equivalent to the parameter number of the FOPID 
controller, which results in a more reasonable parameter space.

 The FOPID controller designed with more flat phase constraints is more robust. 

In the following section, the design method with more flat phase constraints is applied 
to  FO[PID] controller to verify the superiority of the “more flat phase” idea.
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The FO-[PID] Controller Tuning

The control structure
• The control structure combining the 

controlled plant, the FO[PID] controller 
and the gain-phase margin tester[5] is 
shown in Fig. 1.

• 𝑃𝑃 𝑠𝑠 = 𝐾𝐾
𝑇𝑇𝑇𝑇+1

𝑒𝑒−𝐿𝐿𝐿𝐿 is first order plus time 
delay (FOPTD) systems.

• 𝐶𝐶 𝑠𝑠 = 𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑖𝑖
𝑠𝑠

+ 𝐾𝐾𝑑𝑑𝑠𝑠
𝑟𝑟

is the controller, 
namely, fractional order [Proportional 
Integral Derivative] (FO[PID]) controller, 
which has four parameters and 𝑟𝑟 ∈ (0,2).

Margin 
Tester ( )C s ( )P s

y

−

r

Fig. 1. The control structure with the margin tester.

• 𝑀𝑀𝑇𝑇 𝐴𝐴,𝜑𝜑 = 𝐴𝐴𝑒𝑒−𝑗𝑗𝜑𝜑 is the gain-phase margin tester.
• We can obtain the parameter boundaries with the 

given gain margin (phase margin) when we set 𝜑𝜑 =
0 (𝐴𝐴 = 1).

[5] Chang, C. H., and Han, K. W. (1990). Gain margins and phase margins for control systems with adjustable parameters. Journal of Guidance, Control, and Dynamics, 
volume (13), 404–408.



The FO-[PID] Controller Tuning
The  stability region of the FO[PID] controller
• The characteristic equation of the closed-loop system in Fig. 1 can be depicted as,

𝐷𝐷 𝐾𝐾𝑑𝑑 ,𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 , 𝑟𝑟,𝐴𝐴,𝜑𝜑; 𝑠𝑠 = 𝑇𝑇𝑇𝑇 + 1 𝑠𝑠𝑟𝑟 + 𝐴𝐴𝑒𝑒−𝑗𝑗𝜑𝜑𝑒𝑒−𝐿𝐿𝐿𝐿𝐾𝐾 𝐾𝐾𝑝𝑝𝑠𝑠 + 𝐾𝐾𝑖𝑖 + 𝐾𝐾𝑑𝑑𝑠𝑠2
𝑟𝑟.

• The parameter boundaries of 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 with the fixed 𝐾𝐾𝑑𝑑 and 𝑟𝑟 can be determined by two parts, real 
root boundary (RRB) and complex root boundary (CRB).

• RRB: 𝐾𝐾𝑖𝑖𝑟𝑟 = 0.

• CRB:  𝐾𝐾𝑖𝑖 =

𝑅𝑅2

1+ 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 2 ,𝜃𝜃 ∈ −𝜋𝜋
2

, 𝜋𝜋
2

− 𝑅𝑅2

1+ 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 2 ,𝜃𝜃 ∈ −𝜋𝜋,−𝜋𝜋
2
∪ 𝜋𝜋

2
,𝜋𝜋

,𝐾𝐾𝑝𝑝 =

𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃
𝜔𝜔

, 𝜃𝜃 ∈ 0,𝜋𝜋

− 𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃
𝜔𝜔

,𝜃𝜃 ∈ −𝜋𝜋, 0
, 

where 𝑅𝑅 = 𝐾𝐾𝑝𝑝𝜔𝜔
2 + 𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑑𝑑𝜔𝜔2 2 and 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑝𝑝𝜔𝜔

𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 . With all different 𝐾𝐾𝑑𝑑 and 𝑟𝑟 , we can obtain the 
complete stability region of the FO[PID] parameters.



The FO-[PID] Controller Tuning

The FO[PID] controller design with the “more flat phase”

• A specified gain crossover frequency, ω𝑔𝑔𝑔𝑔 .
• A specified phase margin, setting 𝐴𝐴 = 1 and 𝜑𝜑 = 𝜙𝜙𝑚𝑚.
• The more flat phase constraints, 

𝑑𝑑𝜑𝜑
𝑑𝑑ω

= 𝑟𝑟𝐾𝐾𝑝𝑝 𝐾𝐾𝑖𝑖+𝐾𝐾𝑑𝑑𝜔𝜔2

𝐾𝐾𝑝𝑝𝜔𝜔
2+ 𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 2

− 𝐿𝐿 − 𝑇𝑇
1+ 𝑇𝑇𝜔𝜔 2 = 0

𝑑𝑑2𝜑𝜑
𝑑𝑑ω2 = 2𝑟𝑟𝐾𝐾𝑝𝑝

𝐾𝐾𝑑𝑑𝜔𝜔[ 𝐾𝐾𝑝𝑝𝜔𝜔
2+ 𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 2]

[ 𝐾𝐾𝑝𝑝𝜔𝜔
2+ 𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 2]2

− 2𝑟𝑟𝐾𝐾𝑝𝑝
𝐾𝐾𝑖𝑖+𝐾𝐾𝑑𝑑𝜔𝜔2 𝐾𝐾𝑝𝑝2𝜔𝜔−2𝐾𝐾𝑑𝑑𝜔𝜔 𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2

𝐾𝐾𝑝𝑝𝜔𝜔
2+ 𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 2

2 + 2𝑇𝑇2𝜔𝜔
1+ 𝑇𝑇𝜔𝜔 2 2 = 0

, 

for the FO[PID] controller.



The FO-[PID] Controller Tuning
Tuning procedure
Step 1:
• Give a stable FOPTD system and two specifications, a specified phase margin, 𝜑𝜑𝑚𝑚, and a specified 

gain crossover frequency, ω𝑔𝑔𝑔𝑔.
Step 2:
• Fix 𝐾𝐾𝑑𝑑 and 𝑟𝑟, and the CRB by setting 𝜑𝜑 = 𝜙𝜙𝑚𝑚 and 𝐴𝐴 = 1 can be obtained in Fig. 2. Besides, the CRB can 

be obtained by sweeping over all 𝐾𝐾𝑑𝑑 in Fig. 3.
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Fig. 2. The 
CRB with 
different 𝐾𝐾𝑑𝑑, 
𝜑𝜑𝑚𝑚 and 𝑟𝑟.

Fig. 3. The 
CRB by 
sweeping 
over 𝐾𝐾𝑑𝑑.



The FO-[PID] Controller Tuning
Tuning procedure
Step 3:

• Obtain one parameter band by satisfying ω𝑔𝑔𝑔𝑔, 𝜑𝜑𝑚𝑚 and 𝑑𝑑𝜑𝜑
𝑑𝑑ω

= 0 (red band in Fig. 4) and another 

parameter band by satisfying ω𝑔𝑔𝑔𝑔, 𝜑𝜑𝑚𝑚 and 𝑑𝑑
2𝜑𝜑

𝑑𝑑ω2 = 0 (blue band in Fig. 4). Select any parameter pair in 
the intersection as the parameters of the FO[PID] controller.

Fig. 4. The  
intersection 
of the two 
parameter 
bands.

Fig. 5. The 
selected 
parameter pairs 
from the 
intersection
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The FO-[PID] Controller Tuning
Tuning procedure
Remark 1:
• The frequency response and the time-domain response are presented in Fig. 6 and Fig. 7.
• We can know that the closed-loop system is not sensitive to the variation of the loop gain and the 

closed-loop system can obtain the satisfactory control performance with the proposed design method.

Fig. 6. The  open-loop frequency response of 
the selected parameter pairs.

Fig. 7. The control performance with the selected parameter pairs.
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The FO-[PID] Controller Tuning
Tuning procedure
Remark 2:
• With different specification constraints, 𝜙𝜙𝑚𝑚 and ω𝑔𝑔𝑔𝑔, the control performance of FO[PID] and PID 

can be seen in Fig. 8 –Fig. 9.
• It can be learnt that the overshoot of PID has an obvious increase with the increasing gain.
• The proposed design method is not sensitive to the variation of the loop gain and can obtain the 

satisfactory control specifications.

Fig. 8. The control 
performance of  
FO[PID] with 

different specification 
constraints.

Fig. 9. The control 
performance of  

PID with the same 
specification 
constraints.
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The FO-[PID] Controller Tuning
Tuning procedure
Step 4 (To obtain the achievable region of FO[PID]):
• By sweeping over all phase margin, 𝜙𝜙𝑚𝑚 ∈ 0, 1800 , and a specified gain crossover frequency, ω𝑔𝑔𝑔𝑔 ∈

0,ω𝑚𝑚𝑚𝑚𝑚𝑚 , the achievable region of FO[PID] can be obtained as in Fig. 10. Besides, the pseudo code 
can be seen in Fig. 11.

Fig. 10. The achievable region of the FO[PID] controller. Fig. 11. The pseudo code of the design procedure.
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The FO-[PID] Controller Tuning
Experimental verification
• The FO[PID] controller with the proposed design method is applied to the Peltier temperature 

control platform in Fig. 12. 𝑘𝑘𝑔𝑔𝑔𝑔 is added to the control signal to reflect the gain uncertainty.
• The closed-loop system with the designed FO[PID] controller is not sensitive to the variation of the 

loop gain and the time constant. The closed-loop system can obtain the satisfactory control 
performance as shown in Fig. 13.

Fig. 12. The control structure of the Peltier platform. Fig. 13. The experiment result.
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The Animation of Feasible Regions of FOPI and IO-PID 

Now, let’s answer the second question: Can the FOPID really outperform IOPID under 

fairness comparison conditions?

Firstly, how to define the fairness comparison conditions? 

Robustness VS Control Performance

The sizes of the feasibility regions of FOPI and IO-PID are the measurement with the 

constants of gain crossover frequency ω𝑔𝑔𝑔𝑔 and phase margin 𝜙𝜙𝑚𝑚.



The Animation of Feasible Regions of FOPI and IO-PID 

The  stability region of the FOPI controller

• The characteristic equation of the closed-loop system in Fig. 1 (𝐶𝐶 𝑠𝑠 = 𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑖𝑖
𝑠𝑠𝑟𝑟

) can be depicted 
as,

𝐷𝐷 𝐾𝐾𝑑𝑑 ,𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 , 𝑟𝑟,𝐴𝐴,𝜑𝜑; 𝑠𝑠 = 𝑇𝑇𝑇𝑇 + 1 𝑠𝑠𝑟𝑟 + 𝐴𝐴𝑒𝑒−𝑗𝑗𝜑𝜑𝑒𝑒−𝐿𝐿𝐿𝐿𝐾𝐾(𝐾𝐾𝑝𝑝𝑠𝑠𝑟𝑟 + 𝐾𝐾𝑖𝑖).
• The parameter boundaries of 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 with the fixed 𝑟𝑟 can be determined by two parts, RRB 

and CRB.
• RRB: 𝐾𝐾𝑖𝑖 = 0.

• CRB:  𝐾𝐾𝑖𝑖 = − 𝐵𝐵1𝑆𝑆1+𝐵𝐵2𝐶𝐶1
𝐴𝐴𝐴𝐴𝑆𝑆2𝜔𝜔𝑟𝑟 , 𝐾𝐾𝑝𝑝 = 𝐵𝐵− 𝐵𝐵1𝑆𝑆1𝐶𝐶1+𝐵𝐵2𝐶𝐶12

𝐴𝐴𝐴𝐴𝑆𝑆1
+ 𝐵𝐵1𝑆𝑆1𝐶𝐶2+𝐵𝐵2𝐶𝐶1𝐶𝐶2

𝐴𝐴𝐴𝐴𝑆𝑆2
,                                                             (*)

where 𝐵𝐵1 = 𝜔𝜔𝑟𝑟𝐶𝐶2 − 𝑇𝑇𝜔𝜔1+𝑟𝑟𝑆𝑆2, 𝐵𝐵2 = 𝜔𝜔𝑟𝑟𝑆𝑆2 + 𝑇𝑇𝜔𝜔1+𝑟𝑟𝐶𝐶2, 𝐶𝐶1 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 + 𝜔𝜔𝐿𝐿 , 𝐶𝐶2 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝜋𝜋
2

, 𝑆𝑆1 = 𝑠𝑠𝑠𝑠𝑠𝑠(
)

𝜙𝜙 +
𝜔𝜔𝐿𝐿 , 𝑆𝑆2 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝜋𝜋

2
, 𝐸𝐸 = 𝐾𝐾𝑖𝑖 + 𝐾𝐾𝑝𝑝𝜔𝜔𝑟𝑟𝐶𝐶2, 𝐹𝐹 = 𝐾𝐾𝑝𝑝𝜔𝜔𝑟𝑟𝑆𝑆2. With all different 𝑟𝑟, we can obtain the complete 

stability region of the FOPI parameters.



The Animation of Feasible Regions of FOPI and IO-PID 

The FOPI controller design with the specified constraints

• A specified gain crossover frequency, ω𝑔𝑔𝑔𝑔
• A specified phase margin, setting 𝐴𝐴 = 1 and 𝜑𝜑 = 𝜙𝜙𝑚𝑚.
• The flat phase constraint, 

𝑑𝑑𝜑𝜑
𝑑𝑑ω

=
𝐵𝐵12 + 𝐵𝐵22 𝐸𝐸𝐹𝐹′ − 𝐹𝐹𝐸𝐸′ + 𝐵𝐵1′𝐵𝐵2 − 𝐵𝐵2′𝐵𝐵1 𝐸𝐸𝐹𝐹′ − 𝐹𝐹𝐸𝐸′

𝐵𝐵1𝐸𝐸 + 𝐵𝐵2𝐹𝐹 2 + 𝐵𝐵1𝐹𝐹 − 𝐵𝐵2𝐸𝐸 2 − 𝐿𝐿 = 0

where 𝐸𝐸′ = 𝐶𝐶2𝐾𝐾𝑝𝑝𝑟𝑟𝜔𝜔𝑟𝑟−1, 𝐹𝐹′ = 𝑆𝑆2𝐾𝐾𝑝𝑝𝑟𝑟𝜔𝜔𝑟𝑟−1, 𝐵𝐵1′=𝐶𝐶2𝑟𝑟𝜔𝜔𝑟𝑟−1 − 𝑆𝑆2𝑇𝑇 1 + 𝑟𝑟 𝜔𝜔𝑟𝑟, and 
𝐵𝐵2′=𝑆𝑆2𝑟𝑟𝜔𝜔𝑟𝑟−1 + 𝐶𝐶2𝑇𝑇 1 + 𝑟𝑟 𝜔𝜔𝑟𝑟.



The Animation of Feasible Regions of FOPI and IO-PID 
The design procedure or pseudo code to obtain feasibility regions

𝑓𝑓𝑓𝑓𝑓𝑓 𝜔𝜔𝑐𝑐 = 0: 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:𝜔𝜔𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓 𝜙𝜙𝑚𝑚 = 0: 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:𝜋𝜋

𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 = 0.0001: 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 2
𝐾𝐾𝑝𝑝 = 𝐸𝐸𝐸𝐸. ∗ .1 ;
𝐾𝐾𝑖𝑖 = 𝐸𝐸𝐸𝐸. ∗ .2 ;

𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑑𝑑

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 , 𝑟𝑟 ;

𝑖𝑖𝑖𝑖 𝐸𝐸𝐸𝐸. 10 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓
𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 { 𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 , 𝑟𝑟}

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 {𝜔𝜔𝑐𝑐 ,𝜙𝜙𝑚𝑚}.

𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝜔𝜔𝑐𝑐 ,𝜙𝜙𝑚𝑚 % (the feasibility regions)

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝟏𝟏: The code can be simplified for 
obtaining the parameter pair to satisfy the 
constants: the specific pair 𝜔𝜔𝑐𝑐 ,𝜙𝜙𝑚𝑚 and the 
flat phase.

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝟐𝟐: Note that the feasibility regions of 
IOPID  can be obtained with similar design 
procedure.



The Animation of Feasible Regions of FOPI and IO-PID 

The feasibility regions with different delay times (1)

Fig. 13. The feasibility regions of 𝜔𝜔𝑐𝑐 and 𝜙𝜙𝑚𝑚 for FOPI and IOPID design 
with 𝑇𝑇 = 1 𝑠𝑠 and 𝐿𝐿 = 0.1 𝑠𝑠.

The feasibility region of 
FOPI is smaller than 
that of IOPID when 𝐿𝐿 is 
small. However, the 
feasibility set for FOPI 
covers the blank part of 
the feasibility set for 
IOPID with small 
values of 𝜔𝜔𝑐𝑐 and 𝜙𝜙𝑚𝑚.



The Animation of Feasible Regions of FOPI and IO-PID 

The feasibility regions with different delay times (2)

Fig. 14. The feasibility regions of 𝜔𝜔𝑐𝑐 and 𝜙𝜙𝑚𝑚 for FOPI and IOPID design 
with 𝑇𝑇 = 1 𝑠𝑠 and 𝐿𝐿 = 10 𝑠𝑠.

It can be seen clearly that, 
for the FOPI controller, the 
feasibility region of 𝜔𝜔𝑐𝑐 and 
𝜙𝜙𝑚𝑚 is much bigger than 
that of the IOPID 
controller with the time 
delay is large.



The Animation of Feasible Regions of FOPI and IO-PID 
The feasibility regions with different delay times (3)

Fig. 15. The feasibility regions of 𝜔𝜔𝑐𝑐 and 𝜙𝜙𝑚𝑚 for FOPI and IOPID design with 𝑇𝑇 ∈ [0.05,10].

How the feasibility regions change when the time delay 𝐿𝐿 is changing?  
Animated feasibility regions can do!  

(a) The FOPI with different 𝐿𝐿.  (b) The IOPID with different 𝐿𝐿. 

In summary:
When 𝐿𝐿/(𝐿𝐿 + 𝑇𝑇 ) → 1, FOPI 
is more needed than IOPID.
When 𝐿𝐿/(𝐿𝐿 + 𝑇𝑇 ) → 0, FOPI 
is the extended option of 
IOPID.

The FOPID really 
outperform IOPID under 
the fairness comparison 
conditions.



The Animation of Feasible Regions of FOPI and IO-PID 
The feasibility regions with different delay times (4)

Fig. 16. The distributions of  FOPI and IOPID parameters with 𝑇𝑇 ∈ [0.05,10].

The distributions of  FOPI and IOPID parameters with 𝐿𝐿 ∈ [0.05,10].

(a) The FOPI with different 𝐿𝐿.  (b) The IOPID with different 𝐿𝐿. 

It can be seen that, 
{𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖} of FOPI in  
𝑥𝑥 −axis  and 𝑦𝑦 −axis is 
larger than that of 
IOPID.



The Animation of Feasible Regions of FOPI and IO-PID 

The FO[PI] controller design with the specified constraints
• A specified gain crossover frequency, ω𝑔𝑔𝑔𝑔
• A specified phase margin, setting 𝐴𝐴 = 1 and 𝜑𝜑 = 𝜙𝜙𝑚𝑚.
• The flat phase constraint, 

𝑑𝑑𝜑𝜑
𝑑𝑑ω

= 𝑟𝑟𝐾𝐾𝑝𝑝𝐾𝐾𝑖𝑖
(𝐾𝐾𝑝𝑝𝜔𝜔)2+𝐾𝐾𝑖𝑖

2 − 𝐿𝐿 − 𝑇𝑇
1+ 𝑇𝑇𝜔𝜔 2 = 0.

The stability regions of FO[PI] controller 
• RRB: 𝐾𝐾𝑖𝑖𝑟𝑟 = 0.

• CRB:  𝐾𝐾𝑖𝑖 =

𝑅𝑅2

1+ 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 2 ,𝜃𝜃 ∈ −𝜋𝜋
2

, 𝜋𝜋
2

− 𝑅𝑅2

1+ 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 2 ,𝜃𝜃 ∈ −𝜋𝜋,−𝜋𝜋
2
∪ 𝜋𝜋

2
,𝜋𝜋

,𝐾𝐾𝑝𝑝 =

𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃
𝜔𝜔

, 𝜃𝜃 ∈ 0,𝜋𝜋

− 𝐾𝐾𝑖𝑖−𝐾𝐾𝑑𝑑𝜔𝜔2 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃
𝜔𝜔

,𝜃𝜃 ∈ −𝜋𝜋, 0
, 

where 𝑅𝑅 = (𝐾𝐾𝑝𝑝𝜔𝜔)2+𝐾𝐾𝑖𝑖2, 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑝𝑝𝜔𝜔
𝐾𝐾𝑖𝑖

∈ −𝜋𝜋,𝜋𝜋 . With all different 𝐾𝐾𝑑𝑑 and 𝑟𝑟 , we can obtain the 

complete stability region of the FO[PI] parameters.
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The FOPI application in compensation of actuator rate limit

• Control challenge in high 
technology manufacturing

 Precision control 
 Fast response
 Robustness 

• Ignored in classical industry 
 Low requirements of control 

performance
 Cost reduction 

Actuator rate
limit



The FOPI application in compensation of actuator rate limit

• What is actuator rate limit (rate limiter)?
 Input: 𝑟𝑟 𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔) Output: 𝑥̇𝑥 𝑡𝑡 ≤ 𝑅𝑅 (𝑅𝑅: rate limit value)
 Fully activated rate limiter: pure triangular output (dramatic magnitude reduction & 

phase delay)
• Rate limit effect: system identification & control performance

Fig. 17. Steady output (solid) of rate limiter 
under sinusoidal input (dashed).

Fig. 18. Bode plot of rate limiter.



The FOPI application in compensation of actuator rate limit

• Rate limit effect on (step response based) system identification 
 Step signal: infinite change rate (first derivative) at step time
 Smaller rate limit value generates more sluggish step response
 Traditional identification (without considering rate limit): 

mismatched model  &  unsatisfied control performance 

Fig. 19. Unit step response of 1/(𝑠𝑠 + 1) under 
different rate limit value.

Fig. 20. Model mismatch of system 𝐺𝐺(𝑠𝑠)
under rate limit.

Real plant: 

𝐺𝐺 s =
𝐾𝐾

𝑇𝑇𝑇𝑇 + 1
& 𝑅𝑅

FOPTD model

�𝐺𝐺 s =
�𝐾𝐾

�𝑇𝑇𝑠𝑠 + 1
𝑒𝑒−�𝐿𝐿𝑠𝑠



The FOPI application in compensation of actuator rate limit

• Rate limit effect on control performance
 Real plant

𝐺𝐺0 s = 1
𝑠𝑠+1

& 𝑅𝑅 (KLTR model)
 Identified model (without rate limit)

�𝐺𝐺 s =
�𝐾𝐾

�𝑇𝑇𝑠𝑠+1
𝑒𝑒−�𝐿𝐿𝑠𝑠 (KLT model)

 Controller: optimal PI controller based on 
KLTR & KLT model  (ISE index)

Fig. 21. Step response (solid) and control 
signal (dashed) of 𝐺𝐺0 s .



The FOPI application in compensation of actuator rate limit

• Control purpose: compensate phase delay generated by the actuator rate limit
• Controller: flat phase FOPI vs IOPID
• Compensation strategy:
 design initial controller 
 analyze rate limit effect
 update design specifications 
 redesign the controller



The FOPI application in compensation of actuator rate limit

Step 1: initial flat phase controller design
• Flat phase implementation
 Bode plot:

 Nyquist plot:

• Flat phase in Nyquist plot can applied to general minimum-phase system


d𝐿𝐿 𝑗𝑗𝑗𝑗
d𝜔𝜔

= 𝐺𝐺 𝑗𝑗𝑗𝑗 d𝐶𝐶 𝑗𝑗𝑗𝑗
d𝜔𝜔

+ 𝐶𝐶 𝑗𝑗𝑗𝑗 𝐺𝐺(𝑗𝑗𝑗𝑗)(dln 𝐺𝐺 𝑗𝑗𝑗𝑗
d𝜔𝜔

+ d∠𝐺𝐺 𝑗𝑗𝑗𝑗
d𝜔𝜔

)



The FOPI application in compensation of actuator rate limit

Step 1: initial flat phase controller design
• Bode integrals (minimum-phase system):
 ∠𝐺𝐺 𝑗𝑗𝜔𝜔0 = 1

𝜋𝜋 ∫−∞
∞ dln 𝐺𝐺 𝑗𝑗𝑗𝑗

d𝑣𝑣
ln coth |𝑣𝑣|

2
𝑣𝑣 = ln 𝜔𝜔

𝜔𝜔0

 ln 𝐺𝐺 𝑗𝑗𝜔𝜔0 = ln 𝐾𝐾 − 𝜔𝜔0
𝜋𝜋 ∫−∞

∞ d(∠𝐺𝐺 𝑗𝑗𝑗𝑗
𝜔𝜔 )

d𝑣𝑣
ln coth |𝑣𝑣|

2
(𝐾𝐾: steady-state gain)

• Flat phase approximation
 �dln 𝐺𝐺 𝑗𝑗𝑗𝑗

d𝜔𝜔 𝜔𝜔0
≈ 2

𝜋𝜋𝜔𝜔0
∠𝐺𝐺 𝑗𝑗𝜔𝜔0 or    �dln 𝐺𝐺 𝑗𝑗𝑗𝑗

d𝜔𝜔 𝜔𝜔0
≈ 2

𝜋𝜋𝜔𝜔0
∠𝐺𝐺 𝑗𝑗𝜔𝜔0 + 𝜏𝜏𝜔𝜔0 (𝐺𝐺 𝑠𝑠 = 𝐺𝐺0 𝑠𝑠 𝑒𝑒−𝜏𝜏𝜏𝜏)


d∠𝐺𝐺 𝑗𝑗𝑗𝑗

d𝜔𝜔
≈ ∠𝐺𝐺 𝑗𝑗𝜔𝜔0

𝜔𝜔0
− 2

𝜋𝜋𝜔𝜔0
(dln 𝐺𝐺 𝑗𝑗𝜔𝜔0 − ln 𝐾𝐾 )



The FOPI application in compensation of actuator rate limit

Step 2: analyze rate limit effect in closed-loop system
• Describing function of the rate limiter
 𝑁𝑁 𝑗𝑗𝑗𝑗,𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 4

𝜋𝜋
𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝜔𝜔

𝑒𝑒−𝑗𝑗arccos
𝜋𝜋
2
𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝜔𝜔

Step 3: design specifications update rule
• Original: 𝜔𝜔𝑏𝑏 & Φ𝑚𝑚
• Update rule:

 𝜔𝜔𝑏𝑏
∗ = 𝜔𝜔𝑏𝑏 𝑁𝑁 𝑗𝑗𝜔𝜔𝑏𝑏

𝜋𝜋𝜔𝜔𝑏𝑏ln10
2(Φ𝑚𝑚−𝜋𝜋) or   𝜔𝜔𝑏𝑏

∗ = 𝜔𝜔𝑏𝑏 𝑁𝑁 𝑗𝑗𝜔𝜔𝑏𝑏

𝜋𝜋𝜔𝜔𝑏𝑏ln10
2(Φ𝑚𝑚−𝜋𝜋+𝜏𝜏𝜔𝜔𝑏𝑏)

 Φ𝑚𝑚
∗ ≈ Φ𝑚𝑚 − ∠𝑁𝑁 𝑗𝑗𝜔𝜔𝑏𝑏

∗ − (𝐺𝐺 𝑗𝑗𝜔𝜔𝑏𝑏 − ∠𝐺𝐺(𝑗𝑗𝜔𝜔𝑏𝑏
∗))

Step 4: redesign the controller



The FOPI application in compensation of actuator rate limit

Simulation verification
• Plant model 
 𝐺𝐺 𝑠𝑠 = 1

2𝑠𝑠+1
𝑒𝑒−0.1𝑠𝑠 𝑅𝑅 = 1

• Design specifications:
𝜔𝜔𝑏𝑏 = 0.85 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 & Φ𝑚𝑚 = 50°
• Initial flat phase controller
 𝐶𝐶1 𝑠𝑠 = 0.84 + 2.17

𝑠𝑠
+ 0.86𝑠𝑠

 𝐶𝐶2 𝑠𝑠 = 0.55 + 1.57
𝑠𝑠0.91

• Compensated controller
 𝐶̃𝐶1 𝑠𝑠 = 1.92 + 1.64

𝑠𝑠
+ 0.31𝑠𝑠

 𝐶̃𝐶2 𝑠𝑠 = 1.52 + 1.43
𝑠𝑠0.90

Fig. 22. Bode plots of open-loop system after compensation: 
IOPID(left); FOPI(right)

Fig. 23. Step response (a) and control signal.



The FOPI application in compensation of actuator rate limit

Experimental verification: Peltier temperature 
control platform  
• Plant model 
 𝐺𝐺 𝑠𝑠 = 0.1646

51.5028𝑠𝑠+1
𝑒𝑒−1𝑠𝑠 𝑅𝑅 = 1.5&1

• Design specifications:
𝜔𝜔𝑏𝑏 = 0.05 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 & Φ𝑚𝑚 = 45°
• Initial flat phase controller
 𝐶𝐶1 𝑠𝑠 = 7.53 + 0.94

𝑠𝑠
+ 75.86𝑠𝑠 & 𝐶𝐶2 𝑠𝑠 = 6.15 + 0.90

𝑠𝑠0.94

• Compensated controller
 𝑅𝑅 = 1.5:   𝐶̃𝐶1 𝑠𝑠 = 14.16 + 0.56

𝑠𝑠
+ 27.53𝑠𝑠 & 𝐶̃𝐶2 𝑠𝑠 = 12.85 + 0.63

𝑠𝑠0.92

 𝑅𝑅 = 1: 𝐶̃𝐶1 𝑠𝑠 = 16.46 + 0.42
𝑠𝑠

+ 53.76𝑠𝑠 & 𝐶̃𝐶2 𝑠𝑠 = 12.31 + 1.21
𝑠𝑠0.58

Fig. 22. Step response (a) and control signal (R=1.5).

Fig. 23. Step response (a) and control signal (R=1).



Conclusions

• The idea of the “more flat phase” is proposed to design the fractional order controller.

• The tuning procedure of the FO[PID] with “more flat phase” specification constraints 
is deduced and discussed.

• The effectiveness of the FO[PID] is verified by experiments.

• The FOPID really outperform IOPID under the fairness comparison conditions, which 
is verified by the animation of feasible regions of FOPI and IO-PID.

• The FOPI has been successfully applied to the compensation of actuator rate limit 
effect.



[1] IFAC PID 2018 Conference Plenary talk: “Fractional order PID 
control: better than the best issue and what's next” 
https://youtu.be/B3BurjUYPOA
[2] AA Dastjerdi, BM Vinagre, YQ Chen, SH HosseinNia. "Linear 
fractional order controllers; A survey in the frequency domain". 
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https://doi.org/10.1016/j.arcontrol.2019.03.8(49), 51-70, 2019
[3] Shah, P., and Agashe, S. (2016). Review of fractional PID 
controller. Mechatronics, volume (38), 29-41.

• 3rd ed, 1935-2008, 600+ 
pages, 2009.

• 33 pages of references

What’s next?
• Fractional Order PID tuning,
• Smarter PID (digital twin, edge computing, embedded AI etc.)

Can PID still be PHD topic?
• Yes. Starting from this slide!
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https://youtu.be/B3BurjUYPOA
https://doi.org/10.1016/j.arcontrol.2019.03.8(49
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