An efficient mid-ranging control strategy based on feed-forward control

Tore Hägglund

Lunds University

Mid-ranging Application 1

Mid-ranging Application 2

Mid-ranging Application 2

Problems with Valve position control (VPC)

- Stick-slip motion (Application 1)
- Sluggish control close to saturations (Application 2)
- Two controllers, but no redundancy

Problems with Valve position control (VPC)

- Stick-slip motion (Application 1)
- Sluggish control close to saturations (Application 2)
- Two controllers but no redundancy

VPC – Application 2

Problems with Valve position control (VPC)

- Stick-slip motion (Application 1)
- Sluggish control close to saturations (Appllication 2)
- Two controllers but no redundancy

Design of the FFMRC controllers

Design of the FFMRC controllers

$$C_1 = K_1 \left(1 + \frac{1}{sT_{i1}} \right)$$
 $C_2 = K_2$ $C_3 = K_3 \left(1 + \frac{1}{sT_{i3}} \right)$

$$Y = \frac{P_1C_1 + P_2C_2 + P_2C_3C_1}{1 + P_1C_1 + P_2C_2 + P_2C_3C_1} Y_{sp} = \frac{L}{1 + L} Y_{sp}$$

Loop transfer function:

$$L = P_1 C_1 + P_2 C_2 + P_2 C_3 C_1$$

Use Loop shaping!

Design of the FFMRC controllers

Goal:

$$L = P_1C_1 + P_2C_2 + P_2C_3C_1 \approx L_1 = P_1C_1$$

- 1. Tune C_1 using some standard tuning procedure.
- 2. Determine the crossover frequency of L_1 , i.e. frequency ω_1 where $|L_1(i\omega_1)| = 1$.
- 3. Determine gain K_2 in C_2 so that $|P_2(i\omega_1)C_2(i\omega_1)| \leq \gamma$.
- **4**. Determine integral time T_{i3} in C_3 as N/ω_1 .
- 5. Determine gain K_3 in C_3 so that $|P_2(i\omega_1)C_3(i\omega_1)C_1(i\omega_1)| \leq \gamma$.

If $\gamma = 0.1$, φ_m is changed less than 10°.

Simplified design of the FFMRC controllers

- 1. Tune C_1 using some standard tuning procedure.
- 2. Determine static gain K_{p2} of P_2 .
- 3. $K_2 = 1/K_{p2}$.
- 4. $T_{i3} = 5T_{i1}$.
- 5. $K_3 = K_2/K_1$.

$$P_1 = \frac{0.2}{(1+2s)^2}$$
 $P_2 = \frac{0.8}{(1+10s)^2}$

$$K_1 = 8.35$$
 $T_{i1} = 2.68$ (AMIGO)
 $K_2 = 3.2$

$$K_3 = 0.31$$
 $T_{i3} = 10$

Application 1, Stiction, no deadzone

Application 1, Stiction, deadzone

Application 2, VPC

Application 2, FFMRC

The FFMRC Project

- Sponsored by Vinnova (PiiA)
- Collaboration with ABB (Implementation)

