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Cascade Control Systems

System suitable for cascade control

A typical system suitable for cascade control is shown in Figure 1.

The variable between the transfer functions, x1(t), is measurable.

+

+u(t)

di(t) x1(t)

y(t)Gs(s) Gp(s)

Figure 1: Block diagram for a system suitable for cascade control

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 4 / 69



Cascade Control Systems

Cascade control structure

+r(t)

-
+

x∗

1 (t)

-

di(t)

+
+ x1(t) y(t)

Cp(s) Cs(s) Gs(s) Gp(s)

Figure 2: Block diagram of a cascade control system

Secondary and primary systems

The inner-loop system is the secondary system and the outer-loop system is the
primary system. The link between these two loops is the reference signal x∗

1 (t).
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Cascade Control Systems

Design Steps

Subsystems

A complex system is decomposed into a series of first order or second order
subsystems based on the considerations of physical relationships and availability of
measurements.

Subsystem controllers

Design P, PI, PID, PD for each of the subsystems depending on the requirements. In
general, the outer- loop systems are required to contain integral action for eliminate
steady-state errors.

Design procedures

In the design process, the inner-loop control system is designed first and the
closed-loop transfer function for the inner-loop system is obtained. The outer-loop
control system is designed based on the outer-loop system, where the relatively small
time constants resulted from the inner closed- loop system are neglected, but its
steady-state gain is taken into account in the outer-loop model.
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Cascade Control Systems

Stability and Performance Analysis

Robust stability and performance analysis are performed, and closed-loop
performances are adjusted using the bandwidths of the inner-loop and
outer-loop systems.

This step is important because there are neglected dynamics in the cascade
control system.

In principle, the bandwidth of the inner closed-loop control should be much wider
than the one used in the outer closed-loop control. Namely, the inner-loop
control system should have a much faster response speed for obtaining the
closed-loop stability of the cascade control system.

In the implementation, a wider bandwidth for the secondary closed-loop system
is desired and also achieved by putting proportional control Kc on the feedback
error.
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Cascade Control Systems

Design Example: PI +PI

Gs(s) =
5

s + 10
; Gp(s) =

0.005
s + 0.05

Design a cascade control system with two PI controllers. For simplicity, we select the
damping coefficient ξ = 0.707 for both inner and outer-loop control systems and use
the bandwidths wns and wnp as the tuning parameters of the inner (secondary) and
outer-loop (primary) systems respectively.
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Cascade Control Systems

Pole-assignment Controller Design

For the inner-loop control system, we choose wns = 5 × 10 = 50 leading to a pair of
closed-loop poles at −35.35 ± j35.3607, and for the outer-loop system, we choose
wnp = 4 × 0.05 = 0.2 leading to a pair of closed-loop poles at −0.1414 ± j0.1414.
These selections give us the ratio of inner-loop bandwidth to outer-loop bandwidth of
250.
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Cascade Control Systems

The inner-loop control system

Controller parameters

Kcs =
2ξwns − a

b
=

2ξwns − 10
5

= 12.14;

τIs =
2ξwns − a

w2
ns

=
2ξwns − 10

w2
ns

= 0.0243

Closed-loop transfer function

The closed-loop transfer function between the reference signal X∗

1 (s) and the output
signal X1(s) is calculated as

X1(s)

X∗

1 (s)
=

(2ξwns − 10)s + w2
ns

s2 + 2ξwnss + w2
ns

(1)
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Cascade Control Systems

The outer-loop control system

To design the outer-loop controller, we consider the transfer function between X∗

1 (s)
and the output Y (s), which is

Y (s)

X∗

1 (s)
=

(2ξwns − 10)s + w2
ns

s2 + 2ξwnss + w2
ns

0.005
s + 0.05

(2)

We neglect the inner-closed-loop system by considering

X1(s)

X∗

1 (s)
=

(2ξwns−10)

w2
ns

s + 1

1
w2

ns
s2 + 2ξ

wns
s + 1

≈ 1 (3)

Kcp =
2ξwnp − 0.05

0.005
= 46.56; τIp =

2ξwnp − 0.05
w2

np
= 5.82

where wnp = 0.2.
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Cascade Control Systems

Closed-loop poles

One can verify that there are four closed-loop poles with the following values:
−35.2335± j35.4441 and −0.1415 + ±j0.1415.

The pair of dominant closed-loop poles are almost equal to the performance
specifications from the outer-loop control system and the remaining pair is close
to the performance specification from the inner-loop control system.
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Cascade Control Systems

Block Diagram for Cascade Control

+R(s)

-

+
X∗

1

-

Di(s)

+
+ X1 Y (s)Pp(s)

Lp(s)
Ps(s)
Ls(s)

Bs(s)
As(s)

Bp(s)

Ap(s)

Figure 3: Closed-loop cascade control system
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Cascade Control Systems

Closed-loop Transfer Function For Disturbance
Rejection (i)

To examine the effectiveness of disturbance rejection, we calculate the
closed-loop transfer function between the disturbance Di(s) and the output Y (s)
as shown in Figure 3. Here, we assume the reference signal R(s) = 0.

X1(s) =

T (s)s
︷ ︸︸ ︷

Bs(s)Ps(s)

As(s)Ls(s) + Bs(s)Ps(s)
X1(s)∗

+

Si (s)s
︷ ︸︸ ︷

Bs(s)Ls(s)

As(s)Ls(s) + Bs(s)Ps(s)
Di(s)

(4)

X1(s) = T (s)sX1(s)∗ + Si(s)sDi(s) (5)
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Cascade Control Systems

Closed-loop Transfer Function For Disturbance
Rejection (ii)

The primary output Y (s) is expressed as

Y (s) =
Bp(s)

Ap(s)
X1(s)

=
Bp(s)

Ap(s)
(T (s)sX1(s)∗ + Si(s)sDi(s)) (6)

With the control signal X1(s)∗ generated from the primary controller as

X1(s)∗ = −
Pp(s)

Lp(s)
Y (s)

we obtain the closed-loop transfer function from the input disturbance Di(s) to the
output Y (s):

Y (s)

Di(s)
=

Gp(s)Si(s)s

1 + Gp(s)Cp(s)T (s)s
(7)
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Cascade Control Systems

Example

Consider the position control of a DC motor in the presence of unknown load TL. The
relationship between the input voltage V (s) and the angular velocity of the motor Ω(s)
is described by the normalized Laplace transfer function:

Ω(s)

V (s)
=

e−ds

s + 1
(8)

where a small time delay d = 0.0016 (sec) is used to model the delay induced by the
sensing and actuation devices. The angular position Θ(s) is related to the angular
velocity through integration:

Θ(s)

Ω(s)
=

1
s

Design a cascade control system for the position control of the DC motor and show its
advantage in terms of disturbance rejection of the unknown load.
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Cascade Control Systems

Pole-assignment Controller Design

For the cascade control system design, the secondary transfer function is

Gs(s) =
e−ds

s + 1

By neglecting the time delay, from the pole-assignment controller design, the
proportional controller gain and the integral time constant are

Kcs = 2ξwns − 1 = 34.35; τIs =
2ξwns − 1

w2
ns

= 0.0550

where ξ = 0.707 and wns = 25.

The primary transfer function is

Gp(s) =
1
s

and the proportional controller gain and the integral time constant are

Kcp = 2ξwnp = 3.535; τIp =
2ξ
wnp

= 0.5656

where ξ = 0.707 and wnp = 2.5

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 17 / 69



Cascade Control Systems

Sensitivity Analysis (i)
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Figure 4: Sensitivity functions for the secondary control system
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Cascade Control Systems

Sensitivity Analysis (ii)
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Figure 5: Sensitivity functions for the cascade control system
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Cascade Control Systems

Closed-loop Simulation Results
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Figure 6: Cascade closed-loop response to square wave disturbance signal
with amplitude 100 and period of 10.
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Cascade Control Systems

Actuator with Deadzone

e(t)

x(t)

−δ
δ

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 21 / 69



Cascade Control Systems

Deadzone Nonlinearity

Deadzone nonlinearity for an actuator, which is due to wearing and tearing, is
described by the following equations:

x(t) =







e(t)− δ e(t) > δ

0 − δ ≤ e(t) ≤ δ

e(t) + δ e(t) < δ

(9)
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Cascade Control Systems

Example

The actuator for a physical system is described by the transfer function

Gs(s) =
0.5

s + 15
,

which is secondary plant. The primary plant is described by the transfer function:

Gp(s) =
0.8

(0.1s + 1)(s + 0.1)
. (10)

There is a deadzone associated with the actuator.
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Cascade Control Systems

Ignoring Actuator Dynamics

By neglecting this small time constant and taking consideration of the steady-state
gain from the actuator, which is 0.5

15 , we obtain the approximate model for the PI
controller design as

G(s) =
0.5
15

0.8
s + 0.1

=
b

s + a
With a = 0.1, b = 0.0267, wn = 1 and ξ = 0.707, we calculate the PI controller
parameters as

Kc =
2ξwn − a

b
= 49.275; τI =

2ξwn − a
w2

n
= 1.314.
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Cascade Control Systems

Closed-loop Response
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Figure 8: Closed-loop control response by neglecting actuator dynamics.
Key: line (1) response without deadzone; line (2) response with deadzone
(δ = 20); line (3) response with deazone (δ = 40)
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Cascade Control Systems

Cascade Control

We continue from this example. Instead of neglecting the actuator dynamics, we use a
PI controller to control the actuator and a PI controller for the primary plant.

Inner-loop control

We select the natural frequency for the secondary control system as wns = 20, which
is 20 times of that used for the primary control system. With this selection, the PI
controller parameters are

Kcs =
2 × 0.707 × 20 − 15

0.5
= 26.56; τIs =

2 × 0.707 × 20 − 15
400

= 0.0332

Outer-loop control

In the design of primary controller, the inner-loop dynamics are neglected. Therefore,
the PI controller is designed using the transfer function (10) for the primary plant,
leading to

Kcp =
2 × 0.707 × 1 − 0.1

0.8
= 1.6425; τIp =

2 × 0.707 × 1 − 0.1
1

= 1.314.
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Cascade Control Systems

Simulation Program
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Figure 9: Simulink simulation program for the cascade control system with
deadzone nonlinearity in the actuator.
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Cascade Control Systems

Simulation Results
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Figure 10: Closed-loop control response using cascade control (wns = 20,
wnp = 1). Key: line (1) response without deadzone; line (2) response with
deadzone (δ = 20); line (3) response with deadzone (δ = 40)
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles

Multi-rotor UAVs

(a) Quadrotor (b) Hexacopter

Figure 11: Unmanned aerial vehicles (multi-rotor)
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles

Dynamic Model

Model




ṗ
q̇
ṙ



 =





(Iyy − Izz)qr/Ixx

(Izz − Ixx)pr/Iyy

(Ixx − Iyy )pq/Izz



 +





1/Ixx 0 0
0 1/Iyy 0
0 0 1/Izz









τx

τy

τz



 (11)

Parameters

Ixx , Iyy and Izz are the moments of inertia for the three axes in x , y , z directions; p, q
and r the body frame angular velocities in x , y , z directions; τx , τy , τz are the
corresponding torques in x , y , z directions. The multi-rotor is assumed to have
symmetric structure.
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles

Relationships between φ, θ, ψ and p, q, r

Roll, pitch and yaw

The attitude of a multi-rotor is captured by the variations of the three Euler angles: roll
angle φ, pitch angle θ and yaw angle ψ. The roll angle φ is to define the rotation about
the x body axis, pitch angle θ is about y body axis, and yaw angle is about z body axis.

The relationship




φ̇

θ̇

ψ̇



 =





1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/cos(θ)









p
q
r



 . (12)
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles

Attitude Control (i)

System Outputs

For attitude control of quadrotor, the objective is to feedback control the three
Euler angles so that they follow three reference signals (φ∗, θ∗, ψ∗ ).

Therefore, the outputs of the control systems are the three Euler angles: φ, θ, ψ.

Control variables or manipulated variables

The manipulated variables or the control signals are the three torques, τx , τy , τz , along
the x , y and z directions.
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles

Attitude Control (ii)

Intermittent variables

The body frame angular velocities p, q and r along the x , y and z directions are the
intermittent variables.

Cascade control

Because there are two sets of nonlinear dynamic equations, cascade control is a
good choice for this nonlinear control problem.

The body frame angular velocities p, q and r are the secondary variables
because they are directly related to the manipulated variables τx , τy and τz .

The three Euler angles, φ, θ, ψ are the primary variables to achieve the attitude
control
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles

Cascade Control of One Axis
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Figure 12: Cascade feedback control structure
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Cascade Control of Multi-rotor Unmanned Aerial Vehicles

Discussions of Cascade Control

The dynamics of three axes are almost decoupled, thus PI controllers are
designed for each axis separately.

The inner-loop controller (also called secondary controller) is to control
inner-loop (secondary) plant, where its reference signal is the desired angular
velocity that is also the control signal generated from the outer-loop (primary)
controller.

For the cascade control system, the primary objective is to control the outer-loop
(primary) plant to achieve desired closed-loop performance.
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Automatic Tuning of Cascade PID Control Systems

Outline

1 Cascade Control Systems

2 Cascade Control of Multi-rotor Unmanned Aerial Vehicles

3 Automatic Tuning of Cascade PID Control Systems

4 Experimental Results

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 37 / 69



Automatic Tuning of Cascade PID Control Systems

Overview

Auto-tuning procedure

The inner-loop closed-loop system dynamics are considered when tuning outer-loop
controller;

Automatic tuning the inner-loop PID controller;

Closed-loop control of the inner-loop system with the PID controller found;

Automatic tuning of the outer-loop PID controller with the inner-loop closed;

UAV application

Both inner-loop and outer-loop systems are modelled using integrator plus delay.
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Automatic Tuning of Cascade PID Control Systems

Auto-tuner Mechanism for Integrating Systems

Relay Feedback Control

A proportional controller with known gain KT is used to stabilize the integrating
system;

a relay feedback control system is deployed for the output of the closed-loop
system.

Block diagram

−
+

r
Relay

−
+

ū
KT G(s)

ȳ

Figure 13: Relay feedback control system
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Automatic Tuning of Cascade PID Control Systems

The Input and Output Signals
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Figure 14: Relay feedback control signals: top figure input signal; bottom
figure output signal.
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Automatic Tuning of Cascade PID Control Systems

Relay Control

Calculate the relay feedback error: e(tk) = r(tk ) − ȳ(tk ).

If |e(tk)| ≤ ǫ; then ū(tk) = ū(tk−1).

If |e(tk)| > ǫ; then ū(tk) = uss + a × sign(e(tk)).

uss is the steady-state value of input signal chosen to produce symmetric
oscillation.
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Automatic Tuning of Cascade PID Control Systems

Notations

The reference signal r(t) is a constant that represents the steady-state operation
of the plant.

ǫ is the hysteresis selected to avoid the possible random switches caused by the
measurement noise and a is the amplitude of the relay.

The signal ȳ(t) represents the actual output measurement.
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Automatic Tuning of Cascade PID Control Systems

The Characteristics of Relay Control

Assume that the period of the oscillation is T .

The frequency of the periodic signal ū(t), denoting by ω1 = 2π
T , approximately

corresponds to the frequency illustrated on the Nyquist curve shown in Figure
15.

Imag

Real
 

Figure 15: Location of ω1 =
2π on a Nyquist curve.
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Automatic Tuning of Cascade PID Control Systems

Estimation of Open-loop Frequency Response

To estimate the open-loop frequency response, the first step is to estimate the
closed-loop frequency response

T (jω1) =
KT G(jω1)

1 + KT G(jω1)

where G(jω1) is the open-loop frequency response at ω1.
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Automatic Tuning of Cascade PID Control Systems

Estimation of T (jω1)

The pair of input and output signals corresponding to the relay feedback control
system is used.

The input signal equals the relay output signal:

u(t) = ū(t) − uss = a × sign(e(t))

The closed-loop output signal with steady-state removed becomes

y(t) = ȳ(t) − r(t) = −e(t)
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Automatic Tuning of Cascade PID Control Systems

Characteristics of Periodic Signals

For a period T , the Fourier series expansion of the periodic input signal u(t), is
expressed as

u(t) =
4a
π

(sin
2π
T

t +
1
3

sin
6π
T

t +
1
5

sin
10π
T

t + . . .) (13)

The fundamental frequency in continuous-time is 2π
T .

By choosing sampling interval ∆t and the number of samples within one period
N = T

∆t , the discretized input signal u(t) at sampling instant tk = k∆t becomes

u(k) =
4a
π

(sin
2πk
N

+
1
3

sin
6πk
N

+
1
5

sin
10πk

N
+ . . .) (14)

The fundamental frequency in discrete-time is 2π
N .

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 46 / 69



Automatic Tuning of Cascade PID Control Systems

Estimation of T (jω1) using Fast Fourier Transform

The simplest way to estimate the frequency response of the system under relay
feedback is to use Fast Fourier Transform.

Assuming that the data length is L, the Fourier transform of the input signal u(k),
k = 1, 2, . . . , L, is

U(n) =
1
L

L∑

k=1

u(k)e−j 2π(k−1)(n−1)
L (15)

and the corresponding Fourier transform of the output is

Y (n) =
1
L

L∑

k=1

y(k)e−j 2π(k−1)(n−1)
L (16)

where n = 1, 2, 3, . . . , L.

From both (15) and (16), with the definition of Fourier transform, the
corresponding discrete frequency ωd is defined from 0 to 2π(L−1)

L with an
incremental of 2π

L .
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Automatic Tuning of Cascade PID Control Systems

Example: Input and Output Data
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Automatic Tuning of Cascade PID Control Systems

Fourier Transform (1)
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(c) Fourier transform U(ejωd )
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(d) Fourier transform Y (ejωd )
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Automatic Tuning of Cascade PID Control Systems

Fourier Transform (2)

0 0.01 0.02 0.03 0.04 0.05
0

1000

2000

3000

4000

5000

6000

7000

Frequency (rad)

M
ag

(e) Fourier transform U(ejωd ), 0 ≤ ωd ≤
0.045
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(f) Fourier transform Y (ejωd ), 0 ≤ ωd ≤
0.045
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Automatic Tuning of Cascade PID Control Systems

Example (iii)

Locating the fundamental frequency of the relay signal as the maximum value of
U(ejωd ), Identify the peaks of U(ejωd ) as the 14th sample, which is the frequency
at ωd = 2∗π(14−1)

L , L = 14001.

The estimation of the frequency response of the system is then given by

T (14) = Y (14)/U(14) = −0.0040 − 0.5293i

The second peak is identified at the 39th sample, which is the frequency at
ωd = 2∗π(39−1)

L , T = −0.1081 + 0.1950i . The third peak is identified at 64th
sample, which is the frequency at ωd = 2∗π(64−1)

L , T = 0.1054 − 0.0151i .

Conversion between the frequencies: frequency in continuous-time ωc equals
ωd/∆t , where ∆t is the sampling interval.
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Automatic Tuning of Cascade PID Control Systems

Integrator Plus Time Delay Model

For an integrating plus time delay system, a single frequency is sufficient to
determine its gain Kp and time delay d .

The approximate model of an integrating system is assumed to be of the
following form:

Gp(s) =
Kpe−ds

s
(17)

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 52 / 69



Automatic Tuning of Cascade PID Control Systems

Finding the Parameters (i)

Letting the frequency response of the integrator plus delay model (17) be equal
to the estimated Gp(jω1) leads to

Kpe−jdω1

jω1
= Gp(jω1) (18)

Equating the magnitudes on both side of (18) gives

Kp = ω1|Gp(jω1)| (19)

where |e−jdω1 | = 1.
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Automatic Tuning of Cascade PID Control Systems

Finding the Parameters (ii)

Additionally, from (18), the following relationship holds:

e−jdω1 =
jω1Gp(jω1)

Kp

This gives the estimate of time delay as

d = −
1
ω1

tan−1 Imag(jGp(jω1))

Real(jGp(jω1))
(20)

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 54 / 69



Automatic Tuning of Cascade PID Control Systems

PID Controller Design

The parameter β is the scaling factor for the desired closed-loop time constant, which
is defined as

τcl = βd

Kc =
K̂c

dKp

τI = d τ̂I

τD = d τ̂D
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Automatic Tuning of Cascade PID Control Systems

Normalized PID Parameters (i)

Table 1: Normalized PID controller parameters (ξ = 0.707)

0.7 ≤ β ≤ 1 1 < β ≤ 11

K̂c
1

0.3280β2+0.0786β+0.6442
1

0.7184β+0.3661

τ̂I −3.7845β2 + 10.2044β − 4.0298 1.3970β + 1.2271

τ̂D
1

−1.9064β2+6.1545β−1.5875
1

1.4275β+1.6450
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Automatic Tuning of Cascade PID Control Systems

Normalized PID Parameters (ii)

Table 2: Normalized PID controller parameters (ξ = 1)

0.7 ≤ β ≤ 1 1 < β ≤ 11

K̂c
1

0.3100β2
−0.0486β+0.7853

1
0.5138β+0.5909

τ̂I −3.0205β2 + 9.6838β − 3.8821 1.9886β + 1.2118

τ̂D
1

−1.7078β2+5.1844β−1.0555
1

1.0156β+1.7550
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Experimental Results

Outline

1 Cascade Control Systems

2 Cascade Control of Multi-rotor Unmanned Aerial Vehicles

3 Automatic Tuning of Cascade PID Control Systems

4 Experimental Results
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Experimental Results

Application to Quadrotor

Function Model
DC motor drive DRV8833 Dual Motor Driver Carrier
Sensor board MPU6050

Micro processor STM32F103C8T6
RC receiver WFLY065
DC motor 820 Coreless Motor

RC transmitter WFT06X-A
Data logger SparkFun OpenLog

Table 3: quadrotor hardware list
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Experimental Results

Experimental Data
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Figure 16: Relay feedback control signals from inner-loop system: top figure
input signal; bottom figure output signal.
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Experimental Results

Closed-loop Control Results
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Figure 17: Inner-loop step response in closed-loop control. Dashed line:
reference signal; solid line: output.

Liuping Wang (RMIT) Automatic Tuning of Cascade PID Control Systems 61 / 69



Experimental Results

Auto-tuning of Primary PI Controller
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Figure 18: Relay feedback control signals from outer-loop system: top figure
input signal; bottom figure output signal.
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Experimental Results

Closed-loop Control Results
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Figure 19: Comparative outer-loop step response in closed-loop control.
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Experimental Results

Application to Hexacopter

Table 4: Flight controller and avionic components

Components Descriptions
Airframe Turnigy Talon Hexacopter

Microprocessor ATMega2560
Inertial measurement unit MPU6050

Electronic speed controllers Turnigy 25A Speed Controller
Brushless DC motors NTM Prop Drive 28-26 235W

Propellers 10x4.5 SF Props
RC Receiver OrangeRX R815X 2.4Ghz receiver

RC Transmitter Turnigy 9XR PRO transmitter
Datalogger CleanFlight Blackbox Datalogger
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Experimental Results

Relay experimental data
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Figure 20: Inner loop relay test result. KT = 0.3, Ra = 50◦/s, ǫ = 30◦/s
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Experimental Results

Controller parameters

Controller parameters found for inner-loop

Kc = 0.33, τI = 0.26 and τD = 0.03

Controller parameters found for outer-loop

Kc = 3.3, τI = 0.63 and τD = 0.013.
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Experimental Results

Outdoor flight testing
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Figure 22: Experimental testing results. Key- red dashed lines: the reference
signals; blue solid lines: the measured data
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