Feedback stabilization of diagonal infinite-dimensional systems in the presence of delays IFAC World Congress 2020 Workshop: Input-to-state stability and control of infinite-dimensional systems

Hugo Lhachemi

Joint works: Christophe Prieur, Robert Shorten, Emmanuel Trélat

11 July 2020

Stabilization of delayed PDEs

Delay boundary control of PDEs

Topic: stability and stabilization of PDEs in the presence of a delay in the boundary conditions.

[Nicaise and Valein, 2007], [Nicaise and Pignotti, 2008] [Krstic, 2009], [Nicaise, Valein, and Fridman, 2009] [Fridman, Nicaise, and Valein, 2010], [Prieur and Trélat, 2018].

Objective: boundary stabilization and regulation control of open-loop unstable PDEs in the presence of a long input delay.

Example: reaction-diffusion equation

$$y_t = y_{xx} + cy$$

 $y(t,0) = 0, \quad y(t,L) = u(t-D)$
 $y(0,x) = y_0(x)$

• [Krstic, 2009] - backstepping design.

• [Prieur and Trélat, 2018] - spectral reduction and predictor feedback.

Boundary control of PDEs in the presence of a state-delay

Topic: stability and stabilization of PDEs in the presence of a state-delay. [Fridman and Orlov, 2009], [Solomon and Fridman, 2015], [Hashimoto and Krstic, 2016], [Kang and Fridman, 2017], [Kang and Fridman, 2018].

Objective: boundary stabilization of open-loop unstable PDEs in the presence of a state-delay delay.

Example: reaction-diffusion equation

$$y_t(t,x) = y_{xx}(t,x) + a(x)y(t,x) + by(t-h,x)$$

$$y(t,0) = 0, \quad y(t,L) = u(t)$$

$$y(0,x) = y_0(x)$$

- [Hashimoto and Krstic, 2016] backstepping design.
- [Kang and Fridman, 2017] Dirichlet/Neumann boundary conditions and time-varying delay backstepping design.

H. Lhachemi

Stabilization of delayed PDEs

11 July 2020 3 / 93

Spectral reduction and finite-dimensional feedback:

- Spectral reduction.
- Keep a finite number of modes to build a finite-dimensional truncated model capturing the unstable dynamics of the original PDE.
- Solution Design a controller for the truncated model.
- Check that the proposed controller successfully stabilizes the original infinite-dimensional systems.

Early occurrences of this control design method: [Russell, 1978], [Coron and Trélat, 2004], [Coron and Trélat, 2006], etc.

Extension to delay boundary control of a reaction-diffusion equation: [Prieur and Trélat, 2018] by using a predictor feedback [Artstein, 1982]

- 1) Generalities on spectral reduction methods for boundary stabilization
- 2 Stabilization with delayed boundary control
- Boundary stabilization in the presence of a state-delay
- PI regulation with delayed boundary control
- 5 Conclusion

Generalities on spectral reduction methods for boundary stabilization

- 2 Stabilization with delayed boundary control
- 3 Boundary stabilization in the presence of a state-delay
- 4 PI regulation with delayed boundary control
- 5 Conclusion

 $\mathcal H$ is a separable Hilbert space on $\mathbb K$, which is either $\mathbb R$ or $\mathbb C$.

$$\begin{split} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t) + p(t), \qquad t \ge 0\\ \mathcal{B}X(t) &= u(t), \qquad t \ge 0\\ X(0) &= X_0 \end{split}$$

• $\mathcal{A}: D(\mathcal{A}) \subset \mathcal{H} \to \mathcal{H}$ a linear (unbounded) operator;

• $\mathcal{B}: D(\mathcal{B}) \subset \mathcal{H} \to \mathbb{K}^m$ with $D(\mathcal{A}) \subset D(\mathcal{B})$ a linear boundary operator;

• $p: \mathbb{R}_+ \to \mathcal{H}$ a distributed disturbance;

• $u : \mathbb{R}_+ \to \mathbb{K}^m$ the boundary control.

 ${\mathcal H}$ is a separable Hilbert space on ${\mathbb K},$ which is either ${\mathbb R}$ or ${\mathbb C}.$

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t) + p(t), & t \ge 0\\ \mathcal{B}X(t) &= u(t), & t \ge 0\\ X(0) &= X_0 \end{aligned}$$

We assume that $(\mathcal{A}, \mathcal{B})$ is a boundary control system [Curtain and Zwart, 1995]:

 the disturbance-free operator A₀, defined on the domain D(A₀) ≜ D(A) ∩ ker(B) by A₀ ≜ A|_{D(A₀)}, is the generator of a C₀-semigroup S on H;

② there exists a bounded operator *L* ∈ *L*(\mathbb{K}^m , *H*), called a lifting operator, such that $\mathbb{R}(L) \subset D(\mathcal{A})$, $\mathcal{A}L \in \mathcal{L}(\mathbb{K}^m, \mathcal{H})$, and $\mathcal{B}L = I_{\mathbb{K}^m}$.

(日) (同) (三) (三)

Assumed diagonal structure for \mathcal{A}_0

A1) \mathcal{A}_0 is a Riesz-spectral operator, i.e. it has simple eigenvalues λ_n with corresponding eigenvectors $\phi_n \in D(\mathcal{A}_0)$, $n \in \mathbb{N}^*$ that satisfy:

• $\{\phi_n, n \in \mathbb{N}^*\}$ is a Riesz basis:

② there exist constants $m_R, M_R \in \mathbb{R}^*_+$ such that for all $N \in \mathbb{N}^*$ and all $\alpha_1, \ldots, \alpha_N \in \mathbb{K}$,

$$m_R \sum_{n=1}^N |\alpha_n|^2 \le \left\| \sum_{n=1}^N \alpha_n \phi_n \right\|_{\mathcal{H}}^2 \le M_R \sum_{n=1}^N |\alpha_n|^2.$$

② The closure of $\{\lambda_n, n \in \mathbb{N}^*\}$ is totally disconnected, i.e. for any distinct $a, b \in \{\lambda_n, n \in \mathbb{N}^*\}$, $[a, b] \not\subset \{\lambda_n, n \in \mathbb{N}^*\}$.

A2) There exist $N_0 \in \mathbb{N}^*$ and $\alpha \in \mathbb{R}^*_+$ such that $\operatorname{Re} \lambda_n \leq -\alpha$ for all $n \geq N_0 + 1$.

Spectral reduction

Let $\{\psi_n, n \in \mathbb{N}^*\}$ be the dual Riesz-basis of $\{\phi_n, n \in \mathbb{N}^*\}$, i.e., $\langle \phi_k, \psi_l \rangle_{\mathcal{H}} = \delta_{k,l}$ for all $k, l \ge 1$.

We define $x_n(t) \triangleq \langle X(t), \psi_n \rangle_{\mathcal{H}}$ the coefficients of the projection of X(t) into the Riesz basis $\{\phi_n, n \in \mathbb{N}^*\}$.

$$X(t) = \sum_{n \ge 1} x_n(t) \phi_n$$

$$m_R \sum_{n \ge 1} |x_n(t)|^2 \le ||X(t)||^2 \le M_R \sum_{n \ge 1} |x_n(t)|^2_{\mathcal{H}}$$

Dynamics of the coefficients of projection:

$$\dot{x}_n(t) = \lambda_n x_n(t) + \langle (\mathcal{A} - \lambda_n I_{\mathcal{H}}) L u(t), \psi_n \rangle_{\mathcal{H}} + \langle p(t), \psi_n \rangle_{\mathcal{H}}$$

$$\dot{Y}(t) = AY(t) + Bu(t) + P(t),$$

where

$$A = \operatorname{diag}(\lambda_1, \dots, \lambda_{N_0}) \in \mathbb{K}^{N_0 \times N_0}$$
$$B = (b_{n,k})_{1 \le n \le N_0, 1 \le k \le m} \in \mathbb{K}^{N_0 \times m}$$

with $b_{n,k} = \langle (\mathcal{A} - \lambda_n I_{\mathcal{H}}) L e_k, \psi_n \rangle_{\mathcal{H}}$ and (e_1, e_2, \dots, e_m) the canonical basis of \mathbb{K}^m ,

$$Y(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_{N_0}(t) \end{bmatrix} = \begin{bmatrix} \langle X(t), \psi_1 \rangle_{\mathcal{H}} \\ \vdots \\ \langle X(t), \psi_{N_0} \rangle_{\mathcal{H}} \end{bmatrix}, \quad P(t) = \begin{bmatrix} \langle p(t), \psi_1 \rangle_{\mathcal{H}} \\ \vdots \\ \langle p(t), \psi_{N_0} \rangle_{\mathcal{H}} \end{bmatrix}$$

A3) We assume that (A, B) is stabilizable.

Closed-loop dynamics and stability result

Closed-loop system dynamics with predictor feedback synthesized based on the truncated model:

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t) + \rho(t), \\ \mathcal{B}X(t) &= \mathbf{K}Y(t), \\ X(0) &= X_0 \end{aligned}$$

with gain $K \in \mathbb{K}^{m \times N_0}$ such that $A_{cl} \triangleq A + BK$ is Hurwitz.

Stability result

There exist constants κ , C_1 , $C_2 > 0$ such that

$$\|X(t)\|_{\mathcal{H}} + \|u(t)\| \le C_1 e^{-\kappa t} \|X_0\|_{\mathcal{H}} + C_2 \sup_{\tau \in [0,t]} \|p(\tau)\|_{\mathcal{H}}$$

Generalities on spectral reduction methods for boundary stabilization

Stabilization with delayed boundary control

- Case of a constant and known input delay
- Case of an uncertain and time-varying input delay
- Extensions

3 Boundary stabilization in the presence of a state-delay

PI regulation with delayed boundary control

5 Conclusion

H. Lhachemi

Sharp introduction to the concept of predictor feedback

Objective: stabilization of LTI plants in the presence of an input delay D > 0:

$$\dot{x}(t) = Ax(t) + Bu(t-D), \quad t \geq 0,$$

for a stabilizable pair (A, B).

Idea: setting u(t - D) = Kx(t) we have:

$$\dot{x}(t) = A_{\mathrm{cl}}x(t)$$

where K is selected such that $A_{cl} = A + BK$ is Hurwitz.

Predictor component: the control input at time *t* takes the form of u(t) = Kx(t+D); we need to predict x(t+D) from x(t):

$$x(t+D) = e^{DA} \left\{ x(t) + \int_{t-D}^{t} e^{(t-D-s)A} Bu(s) \, \mathrm{d}s \right\}.$$

Reference: seminal work [Artstein, 1982].

Extension to diagonal infinite-dimensional systems?

Positive answer for the reaction-diffusion system:

$$y_t = y_{xx} + c(x)y$$

 $y(t,0) = 0, \quad y(t,L) = u(t-D)$
 $y(0,x) = y_0(x)$

reported in [Prieur and Trélat, 2018] for a constant and known input delay D > 0.

Possible extension to:

- General Sturm-Liouville operator?
- Dirichlet/Neumann/Robin boundary condition and boundary control?
- Robustness issues:
 - Uncertain and time-varying input delay D(t)?
 - Boundary and distributed perturbations?
- Extension to diagonal infinite-dimensional systems?

2 Stabilization with delayed boundary control

- Case of a constant and known input delay
- Case of an uncertain and time-varying input delay
- Extensions

Problem setting

 ${\mathcal H}$ is a separable Hilbert space on ${\mathbb K},$ which is either ${\mathbb R}$ or ${\mathbb C}.$

$$\frac{\mathrm{d}X}{\mathrm{d}t}(t) = \mathcal{A}X(t) + p(t), \qquad t \ge 0$$

$$\begin{aligned} & \mathcal{B}X(t) = u(t - D), \\ & X(0) = X_0 \end{aligned} \qquad t \ge 0 \end{aligned}$$

Assumptions:

• $(\mathcal{A}, \mathcal{B})$ is a boundary control system.

. . .

- Assumption A1 holds: the disturbance free operator \mathcal{A}_0 is diagonal in a Riesz basis.
- Assumption A2 holds: A_0 admits a finite number of unstable modes while the real part of the stable ones do not accumulate at 0.
- The control input u(t) ∈ K^m is subject to a constant and known delay D > 0.

Finite dimensional truncated model

$$\dot{Y}(t) = AY(t) + Bu(t - D) + P(t),$$

where

$$A = \operatorname{diag}(\lambda_1, \dots, \lambda_{N_0}) \in \mathbb{K}^{N_0 \times N_0}$$
$$B = (b_{n,k})_{1 \le n \le N_0, 1 \le k \le m} \in \mathbb{K}^{N_0 \times m}$$

with $b_{n,k} = \langle (\mathcal{A} - \lambda_n I_{\mathcal{H}}) L e_k, \psi_n \rangle_{\mathcal{H}}$ and (e_1, e_2, \dots, e_m) the canonical basis of \mathbb{K}^m ,

$$Y(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_{N_0}(t) \end{bmatrix} = \begin{bmatrix} \langle X(t), \psi_1 \rangle_{\mathcal{H}} \\ \vdots \\ \langle X(t), \psi_{N_0} \rangle_{\mathcal{H}} \end{bmatrix}, \quad P(t) = \begin{bmatrix} \langle p(t), \psi_1 \rangle_{\mathcal{H}} \\ \vdots \\ \langle p(t), \psi_{N_0} \rangle_{\mathcal{H}} \end{bmatrix}$$

A3) We assume that (A, B) is stabilizable.

Closed-loop dynamics and main result

Closed-loop system dynamics with predictor feedback synthesized based on the truncated model:

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t) + p(t), \\ \mathcal{B}X(t) &= u(t - D), \\ u(t) &= \varphi(t)K\left\{Y(t) + \int_{\max(t - D, 0)}^{t} e^{(t - s - D)A}Bu(s)\,\mathrm{d}s\right\}, \\ X(0) &= X_0 \end{aligned}$$

with gain $K \in \mathbb{K}^{m \times N_0}$ such that $A_{cl} \triangleq A + e^{-DA}BK$ is Hurwitz.

Stability result [H. Lhachemi and Prieur, 2021]

There exist constants κ , C_1 , $C_2 > 0$ such that

$$\|X(t)\|_{\mathcal{H}} + \|u(t)\| \le C_1 e^{-\kappa t} \|X_0\|_{\mathcal{H}} + C_2 \sup_{\tau \in [0,t]} \|p(\tau)\|_{\mathcal{H}}$$

Sketch of proof

Proof based on the Lyapunov functional:

$$\begin{split} V(t) &= \gamma_1 \left\{ Z(t)^* P Z(t) + \int_{t-D}^t \varphi(s) Z(s)^* P Z(s) \, \mathrm{d}s \right\} \\ &+ \gamma_2 \varphi(t-D) Z(t-D)^* P Z(t-D) \\ &+ \frac{1}{2} \sum_{k \geq N_0+1} |\langle X(t) - B u(t-D), \psi_k \rangle_{\mathcal{H}}|^2 \,, \end{split}$$

where (Artstein transformation [Artstein, 1982])

$$Z(t) \triangleq Y(t) + \int_{t-D}^{t} e^{(t-s-D)A} Bu(s) \,\mathrm{d}s$$

with $P \succ 0$ such that $A_{cl}^*P + PA_{cl} = -I_{N_0}$ and $\gamma_1, \gamma_2 > 0$ are sufficiently large constants.

2 Stabilization with delayed boundary control

• Case of a constant and known input delay

• Case of an uncertain and time-varying input delay

Extensions

Problem setting

 ${\mathcal H}$ is a separable Hilbert space on ${\mathbb K},$ which is either ${\mathbb R}$ or ${\mathbb C}.$

$$egin{aligned} & rac{\mathrm{d}X}{\mathrm{d}t}(t) = \mathcal{A}X(t), & t \geq 0 \\ & \mathcal{B}X(t) = u(t - \mathcal{D}(t)), & t \geq 0 \\ & X(0) = X_0 \end{aligned}$$

Assumptions:

- $(\mathcal{A}, \mathcal{B})$ is a boundary control system.
- Assumption A1 holds: the disturbance free operator \mathcal{A}_0 is diagonal in a Riesz basis.
- Assumption A2 holds: A_0 admits a finite number of unstable modes while the real part of the stable ones do not accumulate at 0.
- The control input $u(t) \in \mathbb{K}^m$ is subject to an uncertain and time-varying delay D(t) > 0.

$$\dot{Y}(t) = AY(t) + Bu(t - D(t)),$$

where

$$A = \operatorname{diag}(\lambda_1, \dots, \lambda_{N_0}) \in \mathbb{K}^{N_0 \times N_0}$$
$$B = (b_{n,k})_{1 \le n \le N_0, 1 \le k \le m} \in \mathbb{K}^{N_0 \times m}$$

with $b_{n,k} = \langle (\mathcal{A} - \lambda_n I_{\mathcal{H}}) Le_k, \psi_n \rangle_{\mathcal{H}}$ and (e_1, e_2, \dots, e_m) the canonical basis of \mathbb{K}^m .

$$Y(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_{N_0}(t) \end{bmatrix} = \begin{bmatrix} \langle X(t), \psi_1 \rangle_{\mathcal{H}} \\ \vdots \\ \langle X(t), \psi_{N_0} \rangle_{\mathcal{H}} \end{bmatrix}$$

A3) We assume that (A, B) is stabilizable.

Robustness of constant delay predictor feedback

$$\dot{x}(t) = Ax(t) + Bu(t - D(t)), \quad t \ge 0,$$

with $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ such that (A, B) is stabilizable.

Uncertain and time-varying input delay $D \in C^0(\mathbb{R}_+; \mathbb{R}_+)$.

We assume that there exist known constants $D_0 > 0$ and $0 < \delta < D_0$ such that $|D(t) - D_0| \le \delta$.

Constant-delay linear predictor feedback:

$$u(t) = K\left\{x(t) + \int_{t-D_0}^t e^{(t-D_0-s)A} Bu(s) \,\mathrm{d}s\right\}$$

where $K \in \mathbb{R}^{m \times n}$ is such that $A_{cl} = A + e^{-D_0 A} B K$ is Hurwitz.

Sufficient condition on $\delta > 0$ such that the closed-loop system is stable?

Preliminary Lemma

The following preliminary Lemma is a variation of [Fridman, 2006].

Lemma

Let $M, N \in \mathbb{R}^{n \times n}$, $D_0 > 0$, and $\delta \in (0, D_0)$ be given. Assume that there exist $\kappa > 0$, $P_1, Q \in \mathbb{S}_n^{+*}$, and $P_2, P_3 \in \mathbb{R}^{n \times n}$ such that $\Theta(\delta, \kappa) \preceq 0$ with

$$\Theta(\delta,\kappa) = \begin{bmatrix} 2\kappa P_1 + M^{\top} P_2 + P_2^{\top} M & P_1 - P_2^{\top} + M^{\top} P_3 & \delta P_2^{\top} N \\ P_1 - P_2 + P_3^{\top} M & -P_3 - P_3^{\top} + 2\delta Q & \delta P_3^{\top} N \\ \delta N^{\top} P_2 & \delta N^{\top} P_3 & -\delta e^{-2\kappa D_0} Q \end{bmatrix}$$

Then, there exists $C_0 > 0$ such that, for any $D \in C^0(\mathbb{R}_+; \mathbb{R}_+)$ with $|D - D_0| \leq \delta$, the trajectory x of:

$$\dot{x}(t) = Mx(t) + N \{x(t - D(t)) - x(t - D_0)\};$$

 $x(\tau) = x_0(\tau), \ \tau \in [-D_0 - \delta, 0]$

with initial condition $x_0 \in W$ satisfies $||x(t)|| \leq C_0 e^{-\kappa t} ||x_0||_W$ for all $t \geq 0$.

Sketch of proof

We define $V(t) = V_1(t) + V_2(t)$ with $V_1(t) = x(t)^\top P_1 x(t)$ and

$$V_2(t) = \int_{-D_0-\delta}^{-D_0+\delta} \int_{t+\theta}^t e^{2\kappa(s-t)} \dot{x}(s)^\top Q \dot{x}(s) \,\mathrm{d}s \,\mathrm{d}\theta$$

where $P_1, Q \in \mathbb{S}_n^{+*}$.

We have the inequalities:

 $\|\lambda_{\mathrm{m}}(\mathcal{P}_{1})\|x(t)\|^{2}\leq V(t)\leq \max\left(\lambda_{\mathrm{M}}(\mathcal{P}_{1}),2\delta\lambda_{\mathrm{M}}(\mathcal{Q})
ight)\|x(t+\cdot)\|_{W}^{2}$

The computation of the time derivative of V yields

$$egin{aligned} \dot{V}(t) &= 2x(t)^{ op} P_1 \dot{x}(t) + 2\delta \dot{x}(t)^{ op} Q \dot{x}(t) - 2\kappa V_2(t) \ &- \int_{-D_0 - \delta}^{-D_0 + \delta} e^{2\kappa heta} \dot{x}(t+ heta)^{ op} Q \dot{x}(t+ heta) \, \mathrm{d} heta \end{aligned}$$

Sketch of proof

Introducing $P = \begin{bmatrix} P_1 & 0 \\ P_2 & P_3 \end{bmatrix}$ with the slack variables $P_2, P_3 \in \mathbb{R}^{n \times n}$: $\dot{V}(t) + 2\kappa V(t) \leq \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}^\top \Psi \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$,

where

$$\Psi \triangleq P^{\top} \begin{bmatrix} 0 & I \\ M & -I \end{bmatrix} + \begin{bmatrix} 0 & I \\ M & -I \end{bmatrix}^{\top} P + 2 \begin{bmatrix} \kappa P_1 & 0 \\ 0 & \delta Q \end{bmatrix} \\ + \delta e^{2\kappa D_0} P^{\top} \begin{bmatrix} 0 \\ N \end{bmatrix} Q^{-1} \begin{bmatrix} 0 \\ N \end{bmatrix}^{\top} P.$$

From $\Theta(\delta,\kappa) \preceq 0$, the use of the Schur complement yields $\dot{V}(t) + 2\kappa V(t) \leq 0$.

The conclusions of the previous Lemma imply that the matrix M is Hurwitz. A form of "converse" result is provided below.

Lemma

Let $M, N \in \mathbb{R}^{n \times n}$ with M Hurwitz and $D_0 > 0$ be given. Then there exist $\delta \in (0, D_0)$ and $\kappa > 0$ such that the LMI $\Theta(\delta, \kappa) \prec 0$ is feasible.

Hence M Hurwitz implies the existence of small enough deviations of the delay around its nominal value such that the system is exponentially stable.

Theorem [Lhachemi, Prieur, and Shorten, 2019]

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ with (A, B) stabilizable. Let $D_0 > 0$ and let φ be a transition signal over $[0, t_0]$ with $t_0 > 0$. Let $K \in \mathbb{R}^{m \times n}$ be such that $A_{cl} \triangleq A + e^{-D_0 A} B K$ is Hurwitz. Then, there exist $\delta \in (0, D_0)$ such that for any $D \in C^0(\mathbb{R}_+; \mathbb{R}_+)$ with $|D - D_0| \leq \delta$,

$$\dot{x}(t) = Ax(t) + Bu(t - D(t)),$$

$$u(t) = \varphi(t)K\left\{x(t) + \int_{t-D_0}^t e^{(t-D_0-s)A}Bu(s)\,\mathrm{d}s\right\},$$

with initial condition $x(0) = x_0 \in \mathbb{R}^n$ is exponentially stable:

$$||x(t)|| + ||u(t)|| \le Ce^{-\kappa t} ||x_0||, \quad \forall t \ge 0.$$

The above conclusion holds true for any $\delta \in (0, D_0)$ and any $\kappa > 0$ such that the LMI $\Theta(\delta, \kappa) \preceq 0$ is feasible with $M = A_{cl}$ and N = BK.

The introduction of the Artstein transformation

$$z(t) = x(t) + \int_{t-D_0}^t e^{(t-D_0-s)A} Bu(s) \,\mathrm{d}s$$

yields, for times $t \ge t_0 + D_0 + \delta$,

$$\dot{z}(t) = A_{cl}z(t) + BK\{z(t-D(t)) - z(t-D_0)\}$$

with $A_{cl} = A + e^{-D_0 A} B K$ Hurwitz.

The claimed conclusion easily follows from the preliminary lemma.

Application to diagonal infinite-dimensional systems

Predictor feedback synthesized based on the truncated model:

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t), \\ \mathcal{B}X(t) &= u(t - \mathcal{D}(t)), \\ u(t) &= \varphi(t)\mathcal{K}\left\{Y(t) + \int_{\max(t - \mathcal{D}_0, 0)}^t e^{(t - s - \mathcal{D}_0)\mathcal{A}}\mathcal{B}u(s)\,\mathrm{d}s\right\}, \\ X(0) &= X_0 \end{aligned}$$

with gain $K \in \mathbb{K}^{m \times N_0}$ such that $A_{cl} \triangleq A + e^{-D_0 A} B K$ is Hurwitz.

Stability result [Lhachemi, Prieur, and Shorten, 2019]

There exist $\delta, \eta > 0$ such that, for any $\delta_r > 0$, there exists C > 0 such that for any $X_0 \in D(\mathcal{A}_0)$ and $D \in C^2(\mathbb{R}_+; \mathbb{R}_+)$ with $|D - D_0| \le \delta$ and $|\dot{D}| \le \delta_r$,

$$\|X(t)\|_{\mathcal{H}} + \|u(t)\| \leq Ce^{-\eta t}\|X_0\|_{\mathcal{H}}$$

Consider the following reaction-diffusion equation:

$$\left\{egin{array}{l} y_t(t,x) = ay_{xx}(t,x) + cy(t,x), & (t,x) \in \mathbb{R}_+ imes (0,L) \ \left[egin{array}{l} y(t,0) \ y(t,L) \end{array}
ight] = u(t-D(t)), & t>0 \end{array}
ight.$$

Numerical setting:

- system parameters: a = c = 0.5, $L = 2\pi$, $D_0 = 1$ s;
- first eigenvalues: $\lambda_1 = 0.375$, $\lambda_2 = 0$, $\lambda_3 = -0.625$, $\lambda_4 = -1.5$;
- control design: $N_0 = 3$, gain $K \in \mathbb{R}^{2 \times 3}$ is computed to place the poles of the closed-loop truncated model at -0.75, -1, and -1.25.

Application of the main theorem: exponential stability of the closed-loop system with decay rate $\kappa = 0.2$ for $\delta = 0.260$.

Numerical example

Delay: $D(t) = 1 + 0.25 \sin(3\pi t + \pi/4)$

2 Stabilization with delayed boundary control

- Case of a constant and known input delay
- Case of an uncertain and time-varying input delay
- Extensions

Extension 1: ISS w.r.t. boundary disturbances

Closed-loop system dynamics with boundary disturbances d_1, d_2 :

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t), \\ \mathcal{B}X(t) &= u(t - D(t)) + d_1(t), \\ u(t) &= \varphi(t) \left\{ \mathcal{K}Y(t) + \mathcal{K} \int_{\max(t - D_0, 0)}^t e^{(t - s - D_0)\mathcal{A}} \mathcal{B}u(s) \,\mathrm{d}s + d_2(t) \right\}, \\ X(0) &= X_0 \end{aligned}$$

with gain $K \in \mathbb{K}^{m \times N_0}$ such that $A_{cl} \triangleq A + e^{-D_0 A} B K$ is Hurwitz.

Stability result [Lhachemi, Shorten, and Prieur, 2020]

Assume in addition that $\sup_{n\geq N_0+1} |\lambda_n/\operatorname{Re} \lambda_n| < +\infty$. Then there exist constants $\delta, \kappa, C_i > 0$ such that, for any $X_0 \in \mathcal{H}$, $D \in C^1(\mathbb{R}_+; \mathbb{R}_+)$ with $|D - D_0| \leq \delta$, and $d_i \in C^0(\mathbb{R}_+; \mathbb{K}^m)$,

$$\|X(t)\|_{\mathcal{H}} + \|u(t)\| \leq C_1 e^{-\kappa t} \|X_0\|_{\mathcal{H}} + C_2 \sup_{\tau \in [0,t]} \|(d_1(\tau), d_2(\tau))\|$$

Extension 2: distinct input delays

Case of distinct uncertain and time-varying input delays $D_k(t)$:

$$\begin{split} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t), \\ \mathcal{B}X(t) &= \tilde{u}(t) = (u_1(t - D_1(t)), \dots, u_m(t - D_m(t))), \\ u(t) &= \varphi(t)\mathcal{K}\left\{Y(t) + \sum_{i=1}^m \int_{t - D_{0,i}}^t e^{(t - D_{0,i} - s)\mathcal{A}_{N_0}} B_{N_0,i} u_i(s) \,\mathrm{d}s\right\}, \\ X(0) &= X_0, \end{split}$$

with $K_k \in \mathbb{K}^{1 \times N_0}$ such that $A_{cl} = A_{N_0} + \sum_{k=1}^m e^{-D_{0,k}A_{N_0}}B_{N_0,k}K_k$ is Hurwitz.

Stability result [Lhachemi, Prieur, and Shorten, 2020]

There exist $\delta_k, \eta > 0$ such that, for any $\delta_r > 0$, there exists C > 0 such that for any $X_0 \in D(\mathcal{A}_0)$ and $D_k \in C^2(\mathbb{R}_+; \mathbb{R}_+)$ with $|D_k - D_{0,k}| \le \delta_k$ and $|\dot{D}_k| \le \delta_r$,

$$|X(t)\|_{\mathcal{H}} + \|u(t)\| \leq Ce^{-\eta t} \|X_0\|_{\mathcal{H}}$$
Generalities on spectral reduction methods for boundary stabilization

2 Stabilization with delayed boundary control

Boundary stabilization in the presence of a state-delay

- Spectral reduction
- Control design on the truncated model
- Stability assessment of the infinite-dimensional system
- Numerical application

PI regulation with delayed boundary control

Conclusion

Problem setting

Let a > 0, let $b, c \in \mathbb{R}$, and let $\theta_1, \theta_2 \in [0, 2\pi)$ be arbitrary.

$$y_t(t,x) = ay_{xx}(t,x) + by(t,x) + cy(t - h(t),x) + p(t,x)$$

$$\cos(\theta_1)y(t,0) - \sin(\theta_1)y_x(t,0) = u_1(t)$$

$$\cos(\theta_2)y(t,1) + \sin(\theta_2)y_x(t,1) = u_2(t)$$

$$y(\tau,x) = \phi(\tau,x), \quad \tau \in [-h_M,0]$$

 $t \ge 0, x \in (0, 1).$

•
$$y(t, \cdot) \in L^2(0, 1)$$
 is the state at time t ;

- $u_1(t), u_2(t) \in \mathbb{R}$ are the control inputs
 - \Rightarrow with possibly one single control input (i.e., either $u_1 = 0$ or $u_2 = 0$);
- $p \in L^\infty_{\mathrm{loc}}(\mathbb{R}_+; L^2(0, 1))$ is a distributed disturbance;
- $h \in \mathcal{C}^0(\mathbb{R}_+;\mathbb{R}_+)$ with $0 < h_m \le h(t) \le h_M$ is a time-varying delay;
- $\phi \in \mathcal{C}^0([-h_M, 0]; L^2(0, 1))$ is the initial condition.

3

Boundary stabilization in the presence of a state-delay

Spectral reduction

- Control design on the truncated model
- Stability assessment of the infinite-dimensional system
- Numerical application

We rewrite the reaction-diffusion system under the form:

$$y_t(t,x) = ay_{xx}(t,x) + (b+c)y(t,x) + c \{y(t-h(t),x) - y(t,x)\} + p(t,x) \cos(\theta_1)y(t,0) - \sin(\theta_1)y_x(t,0) = u_1(t) \cos(\theta_2)y(t,1) + \sin(\theta_2)y_x(t,1) = u_2(t) y(\tau,x) = \phi(\tau,x), \quad \tau \in [-h_M,0]$$

Interpretation:

- cy(t,x) is viewed as the "nominal contribution" of the term cy(t-h(t),x);
- $c \{y(t h(t), x) y(t, x)\}$ is viewed as a "disturbance term" introduced by the occurrence of the delay h(t).

Abstract formulation of the problem

We define $X(t) = y(t, \cdot)$, $\mathcal{H} = L^2(0, 1)$, and $\mathcal{A}f = af'' + (b+c)f$ and $\mathcal{B}f = (\cos(\theta_1)f(0) - \sin(\theta_1)f'(0), \cos(\theta_2)f(1) + \sin(\theta_2)f'(1)) \in \mathbb{R}^2$ defined on $D(\mathcal{A}) = D(\mathcal{B}) = H^2(0, 1)$.

$$\begin{split} \frac{\mathrm{d}X}{\mathrm{d}t}(t) &= \mathcal{A}X(t) + c\{X(t-h(t)) - X(t)\} + p(t), & t \ge 0\\ \mathcal{B}X(t) &= u(t) = (u_1(t), u_2(t)), & t \ge 0\\ X(\tau) &= \Phi(\tau), & \tau \in [-h_M, 0] \end{split}$$

Key properties: A_0 is self-adjoint, has compact resolvent, and has simple eigenvalues. Hence we have a Hilbert basis $(e_n)_{n\geq 1}$ of $L^2(0, L)$ consisting of eigenfunctions of A_0 associated with the sequence of simple real eigenvalues

$$-\infty < \cdots < \lambda_n < \cdots < \lambda_1$$

Introducing the coefficients of projection $x_n(t) = \langle X(t), e_n \rangle$, the system trajectory can be expanded as a series in the eigenfunctions e_n , convergent in $L^2(0,1)$,

$$X(t)=\sum_{n\geq 1}x_n(t)e_n.$$

Equivalent infinite-dimensional control system:

$$\dot{x}_n(t) = \lambda_n x_n(t) + c \{x_n(t - h(t)) - x_n(t)\} + \langle (\mathcal{A} - \lambda_n) L u(t), e_n \rangle + \langle p(t), e_n \rangle$$

 $n \geq 1$, with

$$||X(t)||^2 = \sum_{n\geq 1} |x_n(t)|^2.$$

Finite dimensional truncated model

For a number of modes $N_0 \ge 0$ to be determined latter:

$$\dot{Y}(t) = AY(t) + c\{Y(t - h(t)) - Y(t)\} + Bu(t) + P(t),$$

where

$$A = \operatorname{diag}(\lambda_1, \dots, \lambda_{N_0}) \in \mathbb{R}^{N_0 \times N_0}$$
$$B = (b_{n,k})_{1 \le n \le N_0, 1 \le k \le 2} \in \mathbb{R}^{N_0 \times 2}$$

with $b_{n,k} = \langle (\mathcal{A} - \lambda_n) L f_k, e_n \rangle_{\mathcal{H}}$ and (f_1, f_2) the canonical basis of \mathbb{R}^2 ,

$$Y(t) = egin{bmatrix} x_1(t) \ dots \ x_{N_0}(t) \end{bmatrix} = egin{bmatrix} \langle X(t), e_1
angle_{\mathcal{H}} \ dots \ \langle X(t), e_{N_0}
angle_{\mathcal{H}} \end{bmatrix}, \quad P(t) = egin{bmatrix} \langle p(t), e_1
angle_{\mathcal{H}} \ dots \ \langle p(t), e_{N_0}
angle_{\mathcal{H}} \end{bmatrix}$$

Final representation of the reaction-diffusion equation for control design and stability analysis:

$$\dot{Y}(t) = AY(t) + c\{Y(t - h(t)) - Y(t)\} + Bu(t) + P(t)$$

$$\dot{x}_n(t) = \lambda_n x_n(t) + c\{x_n(t - h(t)) - x_n(t)\}$$

$$+ \langle (\mathcal{A} - \lambda_n) Lu(t), e_n \rangle + \langle p(t), e_n \rangle$$

with $n \ge N_0 + 1$.

Two-step control design strategy:

- Select the number N_0 of modes captured by the truncated model to ensure the exponential stability of the residual dynamics.
- **②** For an arbitrarily given number of modes N_0 , design a feedback law ensuring the exponential stability of the truncated model.

Boundary stabilization in the presence of a state-delay Spectral reduction

- Control design on the truncated model
- Stability assessment of the infinite-dimensional system
- Numerical application

Control strategy for the finite-dimensional truncated model

Truncated model for an arbitrarily given number of modes N_0 :

$$\dot{Y}(t) = AY(t) + c\{Y(t - h(t)) - Y(t)\} + Bu(t) + P(t)$$

Lemma

The pair (A, B) satisfies the Kalman condition.

(\Rightarrow also holds in the case of one single boundary control input)

Setting

$$u(t) = KY(t)$$

we have

$$\dot{Y}(t) = A_{cl}Y(t) + c\{Y(t - h(t)) - Y(t)\} + P(t)$$

with $A_{cl} = A + BK$ Hurwitz.

Lemma (truncated model)

Let $N_0 \ge 1$ and $0 < h_m < h_M$ be arbitrarily given. Let $K \in \mathbb{R}^{2 \times N_0}$ be such that $A_{cl} = A + BK$ is Hurwitz with simple eigenvalues $\mu_1, \ldots, \mu_{N_0} \in \mathbb{C}$ and $\operatorname{Re} \mu_n < -3|c|$ for all $1 \le n \le N_0$. Then, there exist constants $\sigma, C_2, C_3 > 0$ such that, for all $Y_{\Phi} \in C^0([-h_M, 0]; \mathbb{R}^{N_0}), h \in C^0(\mathbb{R}_+; \mathbb{R})$ with $h_m \le h \le h_M$, and $P \in L^{\infty}_{\operatorname{loc}}(\mathbb{R}_+; \mathbb{R}^{N_0})$, the trajectory Y(t) of the truncated model with command input u(t) = KY(t) satisfies

$$\|Y(t)\| \leq C_2 e^{-\sigma t} \sup_{\tau \in [-h_M,0]} \|Y_{\Phi}(\tau)\| + C_3 \operatorname{ess\,sup}_{\tau \in [0,t]} e^{-\sigma(t-\tau)} \|P(\tau)\|.$$

Sketch of proof

As the eigenvalues of A_{cl} are simple, there exists $Q \in \mathbb{C}^{N_0 \times N_0}$ such that $QA_{cl}Q^{-1} = \Lambda \triangleq \operatorname{diag}(\mu_1, \dots, \mu_{N_0}).$

With
$$Z(t) = QY(t)$$
 and $\hat{P}(t) = QP(t)$, we obtain:
 $\dot{Z}(t) = \Lambda Z(t) + c \{Z(t - h(t)) - Z(t)\} + \hat{P}(t).$
Introducing $v(t) = Z(t) - Z(t - h(t))$, successive estimates yield

$$\sup_{\tau \in [h_M, t]} e^{\sigma \tau} \|v(\tau)\| \le 2e^{\sigma h_M} \|Z_{\Phi}(0)\| + \delta \sup_{\tau \in [0, h_M]} e^{\sigma \tau} \|v(\tau)\|$$

$$+ \delta \sup_{\tau \in [h_M, t]} e^{\sigma \tau} \|v(\tau)\| + \frac{\delta}{|c|} \operatorname{ess\,sup\,} e^{\sigma \tau} \|\hat{P}(\tau)\|$$

for all $t \ge h_M$ with $\alpha = -\max_{1 \le n \le N_0} \operatorname{Re} \mu_n > 3|c|$, $\sigma \in (0, \alpha)$ arbitrary, and

$$\frac{\delta}{\alpha-\sigma}\left\{1+2e^{\sigma h_M}\right\} \underset{\sigma\to 0^+}{\sim} \frac{3|c|}{\alpha} < 1.$$

Sketch of proof

Selecting $\sigma \in (0, \alpha)$ small enough such that $\delta < 1$, we infer

$$\sup_{\tau \in [h_M, t]} e^{\sigma \tau} \| v(\tau) \| \leq \frac{2e^{\sigma h_M}}{1 - \delta} \| Z_{\Phi}(0) \| + \frac{\delta}{1 - \delta} \sup_{\tau \in [0, h_M]} e^{\sigma \tau} \| v(\tau) \| \\ + \frac{\delta}{|c|(1 - \delta)} \operatorname{ess\,sup}_{\tau \in [0, t]} e^{\sigma \tau} \| \hat{P}(\tau) \|$$

for all $t \geq h_M$.

The conclusion follows by 1) estimating $\sup_{\tau \in [0,h_M]} e^{\sigma \tau} ||v(\tau)||$; 2) using the estimate:

$$\begin{split} \sup_{\tau \in [0,t]} e^{\sigma\tau} \|Z(\tau)\| &\leq \|Z_{\Phi}(0)\| + \frac{|c|}{\alpha - \sigma} \sup_{\tau \in [0,t]} e^{\sigma\tau} \|v(\tau)\| \\ &+ \frac{1}{\alpha - \sigma} \operatorname{ess\,sup}_{\tau \in [0,t]} e^{\sigma\tau} \|\hat{P}(\tau)\| \end{split}$$

for all $t \ge 0$; and 3) $Y(t) = Q^{-1}Z(t)$.

3 Boundary stabilization in the presence of a state-delay

- Spectral reduction
- Control design on the truncated model
- Stability assessment of the infinite-dimensional system
- Numerical application

Stability of the infinite-dimensional residual dynamics

Lemma (residual infinite-dimensional dynamics)

Let $0 < h_M < h_M$ and σ , C_4 , $C_5 > 0$ be arbitrarily given. Let $N_0 \ge 1$ be such that $\lambda_{N_0+1} < -2\sqrt{5}|c|$. Then, there exist constants $\kappa \in (0, \sigma)$ and C_6 , $C_7 > 0$ such that, for all $\Phi \in C^0([-h_M, 0]; \mathcal{H})$, $p \in L^{\infty}_{loc}(\mathbb{R}_+; \mathcal{H})$, $h \in C^0(\mathbb{R}_+; \mathbb{R})$ with $h_m \le h \le h_M$, and $u \in AC_{loc}(\mathbb{R}_+; \mathbb{R}^2)$ with

$$egin{aligned} \|u(t)\| + \|\dot{u}(t)\| &\leq C_4 e^{-\sigma t} \sup_{ au \in [-h_M,0]} \|\Phi(au)\| \ &+ C_5 \operatorname{ess\,sup} e^{-\sigma(t- au)} \|p(au)\| \ & au \in [0,t] \end{aligned}$$

we have

$$\sum_{n \ge N_0 + 1} |x_n(t)|^2 \le C_6 e^{-2\kappa t} \sup_{\tau \in [-h_M, 0]} \|\Phi(\tau)\|^2 + C_7 \operatorname{ess\,sup}_{\tau \in [0, t]} e^{-2\kappa(t-\tau)} \|p(\tau)\|^2$$

Sketch of proof

Introducing
$$z_n(t) = \langle X(t) - Lu(t), e_n \rangle = x_n(t) - \langle Lu(t), e_n \rangle$$
 and
 $V(t) = \sum_{n \ge N_0 + 1} |z_n(t) - z_n(t - h(t))|^2$,

successive estimates yield, for $t \geq 2h_M$,

$$\sup_{\tau \in [2h_M, t]} e^{2\kappa\tau} V(\tau) \leq 16e^{4\kappa h_M} Z(h_M) + \eta \sup_{\tau \in [h_M, 2h_M]} e^{2\kappa\tau} V(\tau) + \eta \sup_{\tau \in [2h_M, t]} e^{2\kappa\tau} V(\tau) + \frac{\gamma_1 \eta}{|c|^2} \sup_{\tau \in [-h_M, 0]} \|\Phi(\tau)\|^2 + \frac{(1 + \gamma_2)\eta}{|c|^2} \operatorname{ess\,sup}_{\tau \in [0, t]} e^{2\kappa\tau} \|p(\tau)\|^2.$$

with $\beta = -\lambda_{\textit{N}_0+1}/2 > \sqrt{5}|\textbf{\textit{c}}|$ and

$$\eta = rac{|c|^2}{eta(eta-\kappa)} \left\{1+4e^{2\kappa h_M}
ight\} \mathop{\sim}\limits_{\kappa
ightarrow 0^+} rac{5|c|^2}{eta^2} < 1.$$

Theorem [Lhachemi and Shorten, 2020]

Let $0 < h_m < h_M$ be arbitrarily given. Let $N_0 \ge 1$ be such that $\lambda_{N_0+1} < -2\sqrt{5}|c|$. Let $K \in \mathbb{R}^{2 \times N_0}$ be such that $A_{cl} = A + BK$ is Hurwitz with simple eigenvalues $\mu_1, \ldots, \mu_{N_0} \in \mathbb{C}$ satisfying $\operatorname{Re} \mu_n < -3|c|$ for all $1 \le n \le N_0$. Then, there exist constants κ , C_0 , $C_1 > 0$ such that, for any initial condition $\phi \in \mathcal{C}^0([-h_M, 0]; L^2(0, 1))$, any distributed perturbation $p \in L^\infty_{\operatorname{loc}}(\mathbb{R}_+; L^2(0, 1))$, and any delay $h \in \mathcal{C}^0(\mathbb{R}_+; \mathbb{R})$ with $h_m \le h \le h_M$, the state-delayed reaction diffusion equation with u = KY satisfies

$$\|y(t,\cdot)\| \leq C_0 e^{-\kappa t} \sup_{\tau \in [-h_M,0]} \|\phi(\tau,\cdot)\| + C_1 \operatorname{ess\,sup}_{\tau \in [0,t]} e^{-\kappa(t-\tau)} \|p(\tau,\cdot)\|$$

for all $t \geq 0$.

3 Boundary stabilization in the presence of a state-delay

- Spectral reduction
- Control design on the truncated model
- Stability assessment of the infinite-dimensional system
- Numerical application

Numerical application

$$y_t(t,x) = ay_{xx}(t,x) + by(t,x) + cy(t - h(t),x) + p(t,x)$$

$$\cos(\theta_1)y(t,0) - \sin(\theta_1)y_x(t,0) = u_1(t)$$

$$\cos(\theta_2)y(t,1) + \sin(\theta_2)y_x(t,1) = u_2(t)$$

$$y(\tau,x) = \phi(\tau,x), \quad \tau \in [-h_M,0]$$

 $t \ge 0, x \in (0, 1).$

Numerical setting:

- system parameters: a = 0.2, b = 2, c = 1, $\theta_1 = \pi/3$, and $\theta_2 = \pi/10$;
- first eigenvalues: $\lambda_1 \approx 2.5561$, $\lambda_2 \approx -0.1186 > -2\sqrt{5}|c|$, and $\lambda_3 \approx -6.2299 < -2\sqrt{5}|c|$;
- control design: $N_0 = 2$, gain $K \in \mathbb{R}^{2 \times 2}$ is computed to place the poles of the closed-loop truncated model at $\mu_1 = -3.5$ and $\mu_2 = -4$ with in particular $\mu_2 < \mu_1 < -3|c|$;

Numerical example

- Distributed disturbance: $p(t,x) = d_0(t)(1-x)$.
- Initial condition: $\Phi(t, x) = (1 - t)^2 \{(1 - 2x)/2 + 20x(1 - x)(x - 3/5)\}.$ • Delay: $h(t) = 2 + 1.5 \sin(t)$.

Generalities on spectral reduction methods for boundary stabilization

- 2 Stabilization with delayed boundary control
- 3 Boundary stabilization in the presence of a state-delay
- PI regulation with delayed boundary control
 - Control design strategy
 - Stability analysis
 - Numerical application
 - Extensions

Conclusion

PI controller: classical control architecture widely used by the industry for stabilization and regulation control.

The **extension** of PI control design to **infinite-dimensional systems** has attracted much attention in the recent years.

Early attempts:

- bounded control operators [Pohjolainen, 1982] [Pohjolainen, 1985];
- unbounded control operators [Xu and Jerbi, 1995].

State-of-the-art:

- PI boundary control of linear hyperbolic systems: [Bastin, Coron, and Tamasoiu, 2015]
 [Dos Santos, Bastin, Coron, and d'Andréa-Novel, 2008]
 [Lamare and Bekiaris-Liberis, 2015] [Xu and Sallet, 2014]
- PI boundary controller for 1-D nonlinear transport equation: [Trinh, Andrieu, and Xu, 2017] [Coron and Hayat, 2019]
- PI regulation control of drilling systems: [Barreau, Gouaisbaut, and Seuret, 2019] [Terrand-Jeanne, Martins, and Andrieu, 2018]
- Add of an integral component to open-loop exponentially stable semigroups: [Terrand-Jeanne, Andrieu, Martins, and Xu (2019)]

Objective: PI regulation control of a 1-D reaction-diffusion equation.

Problem setting

Let L > 0, let $c \in L^{\infty}(0, L)$, and let D > 0 be arbitrary.

$$\begin{array}{ll} y_t = y_{xx} + c(x)y + d(x), & (t,x) \in \mathbb{R}^*_+ \times (0,L) \\ y(t,0) = 0, & t \ge 0 \\ y(t,L) = u_D(t) \triangleq u(t-D), & t \ge 0 \\ y(0,x) = y_0(x), & x \in (0,L) \end{array}$$

•
$$y(t, \cdot) \in L^2(0, L)$$
 is the state at time t ;

- $u(t) \in \mathbb{R}$ is the control input;
- D > 0 is the (constant) control input delay;
- $d \in L^2(0, L)$ is a stationary distributed disturbance;
- $y_0 \in H^2(0, L)$ with $y_0(0) = 0$ and $y_0(L) = u(-D)$ is the initial condition.

Control design objective

Let L > 0, let $c \in L^{\infty}(0, L)$, and let D > 0 be arbitrary.

$$\begin{array}{ll} y_t = y_{xx} + c(x)y + d(x), & (t,x) \in \mathbb{R}^*_+ \times (0,L) \\ y(t,0) = 0, & t \ge 0 \\ y(t,L) = u_D(t) \triangleq u(t-D), & t \ge 0 \\ y(0,x) = y_0(x), & x \in (0,L) \end{array}$$

Control design objective:

- Stabilization of the plant;
- PI regulation of the left Neumann trace y_x(t, 0) to some prescribed constant reference input r ∈ ℝ, i.e.,

$$y_x(t,0)
ightarrow r$$
 as $t
ightarrow +\infty$

• Regulation in spite of of the stationary distributed disturbance d;

4 PI regulation with delayed boundary control

- Control design strategy
- Stability analysis
- Numerical application
- Extensions

Add of the integral state z(t)

 $y_t = y_{xx} + c(x)y + d(x), \qquad (t, x) \in \mathbb{R}^*_+ \times (0, L)$ $\dot{z}(t) = y_x(t, 0) - r, \qquad t > 0$

$$y(t,0)=0, \qquad t\geq 0$$

$$y(t, L) = u_D(t) \triangleq u(t - D),$$
 $t \ge 0$
 $y(0, x) = y_0(x),$ $x \in (0, L)$
 $z(0) = z_0$

The system is uncontrolled for negative times, i.e. u(t) = 0 for t < 0.

We assume that $y_0 \in H^2(0, L) \cap H^1_0(0, L)$.

The change of variable

$$w(t,x) = y(t,x) - \frac{x}{L}u_D(t)$$

yields the equivalent homogeneous Dirichlet problem:

$$w_{t} = w_{xx} + c(x)w + \frac{x}{L}c(x)u_{D} - \frac{x}{L}\dot{u}_{D} + d(x)$$
$$\dot{z}(t) = w_{x}(t,0) + \frac{1}{L}u_{D}(t) - r$$
$$w(t,0) = w(t,L) = 0$$
$$w(0,x) = y_{0}(x) - \frac{x}{L}u_{D}(0) = y_{0}(x)$$
$$z(0) = z_{0}$$

Abstract formulation of the problem

Introducing the operator $\mathcal{A} = \partial_{xx} + c \operatorname{id} : D(\mathcal{A}) \subset L^2(0, L) \to L^2(0, L)$ defined on the domain $D(\mathcal{A}) = H^2(0, L) \cap H^1_0(0, L)$,

$$w_t(t, \cdot) = \mathcal{A}w(t, \cdot) + a(\cdot)u_D(t) + b(\cdot)\dot{u}_D(t) + d(\cdot)$$
$$\dot{z}(t) = w_x(t, 0) + \frac{1}{L}u_D(t) - r$$
$$= \overset{x}{z}c(x) \text{ and } b(x) = -\overset{x}{z}$$

with $a(x) = \frac{x}{L}c(x)$ and $b(x) = -\frac{x}{L}$.

Key properties: A is self-adjoint, has compact resolvent, and has simple eigenvalues. Hence we have a Hilbert basis $(e_j)_{j\geq 1}$ of $L^2(0, L)$ consisting of eigenfunctions of A associated with the sequence of simple real eigenvalues

$$-\infty < \cdots < \lambda_j < \cdots < \lambda_1$$

with (when $j \to +\infty$)

$$e_j^\prime(0)\sim \sqrt{rac{2}{L}}\sqrt{|\lambda_j|}, \qquad \lambda_j\sim -rac{\pi^2 j^2}{L^2}$$

Spectral reduction of the problem

Since $w(0, \cdot) = y_0 \in H^2(0, L) \cap H^1_0(0, L)$, the classical solution $w(t, \cdot) \in H^2(0, L) \cap H^1_0(0, L)$ can be expanded as a series in the eigenfunctions $e_j(\cdot)$, convergent in $H^1_0(0, L)$,

$$w(t,\cdot) = \sum_{j=1}^{+\infty} w_j(t) e_j(\cdot).$$

Equivalent infinite-dimensional control system:

$$egin{aligned} \dot{w}_j(t) &= \lambda_j w_j(t) + a_j u_D(t) + b_j \dot{u}_D(t) + d_j \ \dot{z}(t) &= \sum_{j\geq 1} w_j(t) e_j'(0) + rac{1}{L} u_D(t) - r \end{aligned}$$

for $j \in \mathbb{N}^*$, with $w_j(t) = \langle w(t, \cdot), e_j \rangle$, $a_j = \langle a, e_j \rangle$, $b_j = \langle b, e_j \rangle$, and $d_j = \langle d, e_j \rangle$.

Introducing the auxiliary control input $v = \dot{u}$, and denoting $v_D(t) \triangleq v(t - D)$,

$$\begin{split} \dot{u}_{D}(t) &= v_{D}(t) \\ \dot{w}_{j}(t) &= \lambda_{j} w_{j}(t) + a_{j} u_{D}(t) + b_{j} v_{D}(t) + d_{j} \\ \dot{z}(t) &= \sum_{j \ge 1} w_{j}(t) e_{j}'(0) + \frac{1}{L} u_{D}(t) - r \end{split}$$

for $j \in \mathbb{N}^*$.

As u(t) = 0 for t < 0, we also have v(t) = 0 for t < 0 and the initial condition $u_D(0) = 0$.

Finite-dimensional truncated model

Let $N_0 \in \mathbb{N}^*$ be such that $\lambda_j \ge 0$ when $1 \le j \le N_0$ and $\lambda_j \le \lambda_{N_0+1} < 0$ when $j \ge N_0 + 1$. Introducing:

$$X_1(t) = \begin{pmatrix} u_D(t) \\ w_1(t) \\ \vdots \\ w_{N_0}(t) \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ a_1 & \lambda_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & \lambda_{N_0} \end{pmatrix},$$

$$B_1 = \begin{pmatrix} 1 & b_1 & \dots & b_{N_0} \end{pmatrix}^\top, \\ D_1 = \begin{pmatrix} 0 & d_1 & \dots & d_{N_0} \end{pmatrix}^\top,$$

the N_0 first modes of the PDE are captured by

$$\dot{X}_1(t) = A_1 X_1(t) + B_1 v_D(t) + D_1.$$

Rewriting of the integral component

Integral component:

$$\dot{z}(t) = \sum_{j=1}^{N_0} w_j(t) e'_j(0) + \sum_{j \ge N_0 + 1} w_j(t) e'_j(0) + \frac{1}{L} u_D(t) - r.$$

Change of variable (recall that $\left|\frac{e'_j(0)}{\lambda_j}\right|^2 \sim \frac{2L}{\pi^2 j^2}$ when $j \to +\infty$):

$$\zeta(t) \triangleq z(t) - \sum_{j \ge N_0+1} \frac{e'_j(0)}{\lambda_j} w_j(t),$$

whose time derivative is given by

$$\dot{\zeta}(t) = \alpha u_D(t) + \beta v_D(t) - \gamma + \sum_{j=1}^{N_0} w_j(t) e'_j(0),$$

with

$$\alpha = \frac{1}{L} - \sum_{j \ge N_0 + 1} \frac{e'_j(0)}{\lambda_j} a_j, \quad \beta = -\sum_{j \ge N_0 + 1} \frac{e'_j(0)}{\lambda_j} b_j, \quad \gamma = r + \sum_{j \ge N_0 + 1} \frac{e'_j(0)}{\lambda_j} d_j.$$

H. Lhachemi

With $X(t) = \begin{bmatrix} X_1(t)^\top & \zeta(t) \end{bmatrix}^\top \in \mathbb{R}^{N_0+2}$ and the exogenous input $\Gamma = \begin{bmatrix} D_1^\top & -\gamma \end{bmatrix}^\top \in \mathbb{R}^{N_0+2}$,

$$\dot{X}(t) = AX(t) + Bv(t-D) + \Gamma$$

where

$$A = \begin{pmatrix} A_1 & 0 \\ L_1 & 0 \end{pmatrix} \in \mathbb{R}^{(N_0+2)\times(N_0+2)}, \quad B = \begin{pmatrix} B_1 \\ \beta \end{pmatrix} \in \mathbb{R}^{N_0+2},$$

with

$$\mathcal{L}_1 = ig(lpha \quad e_1'(0) \quad \dots \quad e_{\mathcal{N}_0}'(0)ig) \in \mathbb{R}^{1 imes (\mathcal{N}_0+1)}.$$

Final representation of the reaction-diffusion equation augmented with the integral component:

$$\dot{X}(t) = AX(t) + Bv(t - D) + \Gamma$$

 $\dot{w}_j(t) = \lambda_j w_j(t) + a_j u(t - D) + b_j v_D(t) + d_j$

with $j \ge N_0 + 1$.

Lemma

The pair (A, B) satisfies the Kalman condition.

Design of a classical predictor feedback to stabilize the truncated model:

$$\dot{X}(t) = AX(t) + Bv(t-D) + \Gamma.$$

Introducing the Artstein transformation [Artstein, 1982]

$$Z(t) = X(t) + \int_{t-D}^{t} e^{A(t-D-\tau)} Bv(\tau) \,\mathrm{d}\tau,$$

we have

$$\dot{Z}(t) = AZ(t) + e^{-DA}Bv(t) + \Gamma.$$

Let $K \in \mathbb{R}^{1 \times (N_0+2)}$ be such that $A_K = A + e^{-DA}BK$ is Hurwitz. Setting $v(t) = \chi_{[0,+\infty)}(t)KZ(t)$, we obtain the stable closed-loop dynamics

$$\dot{Z}(t) = A_{\mathcal{K}}Z(t) + \Gamma.$$
Closed-loop dynamics in X-coordinates:

$$\begin{split} \dot{X}(t) &= AX(t) + Bv_D(t) + \Gamma\\ \dot{w}_j(t) &= \lambda_j w_j(t) + a_j u_D(t) + b_j v_D(t) + d_j, \quad j \ge N_0 + 1\\ v(t) &= \chi_{[0,+\infty)}(t) \mathcal{K}\left(X(t) + \int_{\max(t-D,0)}^t e^{A(t-D-\tau)} Bv(\tau) \,\mathrm{d}\tau\right) \end{split}$$

Closed-loop dynamics in Z-coordinates:

$$\begin{split} \dot{Z}(t) &= A_{\mathcal{K}}Z(t) + \Gamma\\ \dot{w}_j(t) &= \lambda_j w_j(t) + a_j u_D(t) + b_j v_D(t) + d_j, \quad j \ge N_0 + 1\\ v(t) &= \chi_{[0,+\infty)}(t) \mathcal{K}Z(t) \end{split}$$

H. Lhachemi

The **equilibrium condition** of the closed-loop system is fully characterized by:

- the constant reference input r for the left Neumann trace $y_x(t, 0)$;
- the stationary distributed disturbance $d \in L^2(0, L)$.

Dynamics of **deviations** in X-coordinates:

$$\begin{split} \Delta \dot{X}(t) &= A \Delta X(t) + B \Delta v_D(t) \\ \Delta \dot{w}_j(t) &= \lambda_j \Delta w_j(t) + a_j \Delta u_D(t) + b_j \Delta v_D(t), \quad j \ge N_0 + 1 \\ \Delta v(t) &= \chi_{[0,+\infty)}(t) \mathcal{K} \left(\Delta X(t) + \int_{\max(t-D,0)}^t e^{A(t-D-\tau)} B \Delta v(\tau) \, \mathrm{d}\tau \right) \end{split}$$

Similar result for the dynamics of deviations in Z-coordinates.

4 PI regulation with delayed boundary control

• Control design strategy

• Stability analysis

- Numerical application
- Extensions

Main stability result

Theorem (stability) [Lhachemi, Prieur, and Trélat, 2020]

There exist $\kappa, \overline{C}_1 > 0$ such that

$$egin{aligned} \Delta u_D(t)^2 + \Delta \zeta(t)^2 + \|\Delta w(t)\|^2_{H^1_0(0,L)} \ &\leq \overline{C}_1 e^{-2\kappa t} \left(\Delta u_D(0)^2 + \Delta \zeta(0)^2 + \|\Delta w(0)\|^2_{H^1_0(0,L)}
ight), \quad orall t \geq 0. \end{aligned}$$

The proof of the Theorem relies on the following Lyapunov function:

$$egin{aligned} \mathcal{W}(t) &= rac{M}{2} \Delta Z(t)^{ op} \mathcal{P} \Delta Z(t) + rac{M}{2} \int_{\mathsf{max}(t-D,0)}^{t} \Delta Z(s)^{ op} \mathcal{P} \Delta Z(s) \, \mathrm{d}s \ &- rac{1}{2} \sum_{j \geq 1} \lambda_j \Delta w_j(t)^2, \end{aligned}$$

where $P = P^{\top} \in \mathbb{R}^{(N_0+2) \times (N_0+2)}$ is the solution of the Lyapunov equation $A_K^{\top}P + PA_K = -I$ and M > 0 is a constant chosen sufficiently large.

Sketch of proof

Lemma 1

There exists a constant $C_1 > 0$ such that

$$egin{aligned} V(t) &\geq C_1 \sum_{j \geq 1} (1+|\lambda_j|) \Delta w_j(t)^2, & orall t \geq 0 \ V(t) &\geq C_1 \left(\Delta u_D(t)^2 + \Delta \zeta(t)^2 + \|\Delta w(t)\|^2_{H^1_0(0,L)}
ight), & orall t \geq 0 \ V(t) &\geq C_1 \|\Delta Z(t)\|^2, & orall t \geq 0. \end{aligned}$$

Lemma 2

There exist $\kappa > 0$ such that

$$V(t) \leq e^{-2\kappa(t-D)}V(D), \quad \forall t \geq D.$$

Lemma 3

There exists $C_2 > 0$ such that

$$V(t) \leq C_2 \left(\Delta u_D(0)^2 + \Delta \zeta(0)^2 + \|\Delta w(0)\|^2_{H^1_0(0,L)}
ight), \quad orall t \in [0,D].$$

Theorem (reference tracking) [Lhachemi, Prieur, and Trélat, 2020]

Let $\kappa>0$ be provided by the previous stability Theorem. There exists $\overline{C}_2>0$ such that

$$egin{aligned} &|y_{\mathsf{x}}(t,0)-r|\ &\leq \overline{\mathcal{C}}_2 e^{-\kappa t} \left(|\Delta u_D(0)| + |\Delta \zeta(0)| + \|\Delta w(0)\|_{H^1_0(0,L)} + \|\mathcal{A}\Delta w(0)\|_{L^2(0,L)}
ight). \end{aligned}$$

Sketch of proof

Since $w_{e,x}(0) + \frac{1}{L}u_e = r$, we have $|y_x(t,0)-r| = \left|w_x(t,0) + \frac{1}{l}u_D(t) - r\right|$ $\leq |w_{x}(t,0) - w_{e,x}(0)| + \frac{1}{L}|\Delta u_{D}(t)|.$ As $e'_i(0) \sim \sqrt{\frac{2}{I}} \sqrt{|\lambda_j|}$, there exists a constant $\gamma_7 > 0$ such that $|e_i'(0)| \leq \gamma_7 \sqrt{|\lambda_j|}$ for all $j \geq N_0 + 1$. For any $m \geq N_0 + 1$, $|w_{x}(t,0) - w_{ex}(0)|$ $\leq \sum_{i=1} |\Delta w_j(t)||e_j'(0)| + \gamma_7 \sum \sqrt{|\lambda_j|}|\Delta w_j(t)|$ $\leq \sqrt{\sum_{i=1}^{m-1} e_j'(0)^2} \sqrt{\sum_{i=1}^{m-1} \Delta w_j(t)^2} + \gamma_7 \sqrt{\sum_{i>m} \frac{1}{|\lambda_j|}} \sqrt{\sum_{i>m} \lambda_j^2 \Delta w_j(t)^2}$

Sketch of proof

It remains to study the term $\sqrt{\sum_{j\geq m}\lambda_j^2\Delta w_j(t)^2}$. Recall that

$$\Delta \dot{w}_j(t) = \lambda_j \Delta w_j(t) + a_j \Delta u_D(t) + b_j \Delta v_D(t).$$

Hence, by direct integration $(j \ge m \ge N_0 + 1)$

$$\begin{split} &|\lambda_j \Delta w_j(t)| \\ &\leq e^{\lambda_j t} |\lambda_j \Delta w_j(0)| + \int_0^t (-\lambda_j) e^{\lambda_j (t-\tau)} \left\{ |a_j| |\Delta u_D(\tau)| + |b_j| |\Delta v_D(\tau)| \right\} \, \mathrm{d}\tau \end{split}$$

Using the previous stability result, we obtain

$$\begin{split} &\sum_{j\geq m} \lambda_j^2 \Delta w_j(t)^2 \\ &\leq C_3^2 e^{-2\kappa t} \left(|\Delta u_D(0)|^2 + |\Delta \zeta(0)|^2 + \|\Delta w(0)\|_{H^1_0(0,L)}^2 + \|\mathcal{A} \Delta w(0)\|_{L^2(0,L)}^2 \right) \end{split}$$

for some constant $C_3 > 0$.

4 PI regulation with delayed boundary control

- Control design strategy
- Stability analysis
- Numerical application
- Extensions

Numerical application

$$egin{aligned} y_t &= y_{xx} + c(x)y + d(x), & (t,x) \in \mathbb{R}^*_+ imes (0,L) \ y(t,0) &= 0, & t \geq 0 \ y(t,L) &= u(t-D), & t \geq 0 \ y(0,x) &= y_0(x), & x \in (0,L) \end{aligned}$$

Numerical setting:

- system parameters: c = 1.25, $L = 2\pi$, and D = 1 s;
- first eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 0.25$, $\lambda_3 = -1$;
- control design: $N_0 = 2$, gain $K \in \mathbb{R}^{1 \times 4}$ is computed to place the poles of the closed-loop truncated model at -0.5, -0.6, -0.7, and -0.8;
- reference: r = 50;
- distributed disturbance: d(x) = x;
- initial condition: $y_0(x) = -\frac{x}{L} \left(1 \frac{x}{L}\right);$

Numerical application

Figure: Time evolution of the closed-loop system

H. Lhachemi

Stabilization of delayed PDEs

:▶ ৰ ≣ ▶ ≣ পি ৭ ৫ 11 July 2020 82 / 93

4 PI regulation with delayed boundary control

- Control design strategy
- Stability analysis
- Numerical application
- Extensions

Let L > 0, let $c \in L^{\infty}(0, L)$, and let D > 0 be arbitrary.

$$\begin{array}{ll} y_t = y_{xx} + c(x)y + d(t, x), & (t, x) \in \mathbb{R}^*_+ \times (0, L) \\ y(t, 0) = 0, & t \ge 0 \\ y(t, L) = u(t - D), & t \ge 0 \\ y(0, x) = y_0(x), & x \in (0, L) \end{array}$$

PI control:

- exponential input-to-state stabilization w.r.t. d(t, x);
- setpoint regulation of the left Neumann trace $y_x(t,0)$ to some reference input $r(t) \in \mathbb{R}$.

```
[Lhachemi, Prieur, and Trélat, 2021]
```

Extension 2: semilinear wave equation

$$egin{aligned} y_{tt} &= y_{xx} + f(y), & (t,x) \in \mathbb{R}^*_+ imes (0,L) \ y(t,0) &= 0, & t \geq 0 \ y_x(t,L) &= u(t), & t \geq 0 \ y(0,x) &= y_0(x), & x \in (0,L) \ y_t(0,x) &= y_1(x), & x \in (0,L) \end{aligned}$$

Control strategy:

- preliminary (classical) velocity feedback;
- estimate of a PI controller.

Result: Local PI regulation control of the left Neumann trace $y_x(t, 0)$ to some prescribed constant reference $r \in \mathbb{R}$.

Generalities on spectral reduction methods for boundary stabilization

- 2 Stabilization with delayed boundary control
- 3 Boundary stabilization in the presence of a state-delay
- 4 PI regulation with delayed boundary control
- 5 Conclusion

- Boundary stabilization and regulation control of PDEs in the presence of delays.
- Spectral reduction-based methods can be efficient tools to achieve:
 - stabilization with delayed boundary control;
 - boundary stabilization in the presence of a state-delay;
 - PI regulation control.
- Future lines of research:
 - robustness;
 - output feedback;
 - systems of PDEs;
 - etc.

Z. Artstein (1982)

Linear systems with delayed controls: A reduction IEEE Transactions on Automatic control, 27(4), 869-879.

M. Barreau, F. Gouaisbaut, and A. Seuret (2019)

Practical stabilization of a drilling pipe under friction with a PI-controller arXiv preprint arXiv:1904.10658.

G. Bastin, J. M. Coron, and S. O. Tamasoiu (2015)

Stability of linear density-flow hyperbolic systems under PI boundary control Automatica, 53, 37-42.

J.M. Coron and E. Trélat (2004)

Global steady-state controllability of one-dimensional semilinear heat equations SIAM journal on control and optimization, 43(2), 549-569.

J.M. Coron and E. Trélat (2006)

Global steady-state stabilization and controllability of 1D semilinear wave equations Communications in Contemporary Mathematics, 8(4), 535-567.

J. M. Coron and A. Hayat (2019)

PI controllers for 1-D nonlinear transport equation IEEE Transactions on Automatic Control, 64(11), 4570-4582.

R. Curtain and H. Zwart (1995)

An introduction to infinite-dimensional linear systems theory vol. 21. New York, NY, USA: Springer.

V. Dos Santos, G. Bastin, J. M. Coron, and B. d'Andréa-Novel (2008)

Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments Automatica, 44(5), 1310-1318.

V. Dos Santos, G. Bastin, J. M. Coron, and B. d'Andréa-Novel (2016)

Stabilization of reaction diffusion equations with state delay using boundary control input IEEE Transactions on Automatic Control, 61(12), 4041-4047.

E. Fridman (2006).

A new Lyapunov technique for robust control of systems with uncertain non-small delays. IMA Journal of Mathematical Control and Information, 23(2), 165-179.

E. Fridman and Y. Orlov (2009).

Exponential stability of linear distributed parameter systems with time-varying delays Automatica, 45(1), 194-201.

Stabilization of second order evolution equations with unbounded feedback with time-dependent delay SIAM Journal on Control and Optimization, 48(8), 5028-5052.

Boundary control of delayed ODE-heat cascade under actuator saturation Automatica, 83, 252-261.

W. Kang and E. Fridman (2017).

Boundary constrained control of delayed nonlinear Schrödinger equation IEEE Transactions on Automatic Control, 63(11), 3873-3880.

M. Krstic (2009)

Control of an unstable reaction–diffusion PDE with long input delay Systems & Control Letters, 58(10-11), 773-782.

P. O. Lamare and N. Bekiaris-Liberis (2015)

Control of 2 × 2 linear hyperbolic systems: Backstepping-based trajectory generation and Pl-based tracking Systems & Control Letters, 86, 24-33.

H. Lhachemi, C. Prieur, and R. Shorten (2019)

An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays

Automatica, 109, 108551.

H. Lhachemi, C. Prieur, and R. Shorten (2020)

Robustness of constant-delay predictor feedback with respect to distinct uncertain time-varying input delays IFAC World Congress 2020.

H. Lhachemi, C. Prieur, and E. Trélat (2020)

Neumann trace tracking of a constant reference input for 1-D boundary controlled heat-like equations with delay IFAC World Congress 2020.

H. Lhachemi, C. Prieur, and E. Trélat (2020)

PI regulation control of a 1-D semilinear wave equation arXiv preprint arXiv:2006.10467.

H. Lhachemi and R. Shorten (2020)

Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay Automatica, 116, 108931.

H. Lhachemi, R. Shorten, and C. Prieur (2020)

Exponential input-to-state stabilization of a class of diagonal boundary control systems with delay boundary control Systems & Control Letters, 138, 104651.

H. Lhachemi and C. Prieur (2021)

Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control IEEE Transactions on Automatic Control, in press.

H. Lhachemi, C. Prieur, and E. Trélat (2021)

PI Regulation of a Reaction-Diffusion Equation with Delayed Boundary Control

IEEE Transactions on Automatic Control, in press.

11 July 2020 90 / 93

S. Nicaise and J. Valein (2007)

Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks Networks & Heterogeneous Media, 2(3), 425-479.

S. Nicaise and C. Pignotti (2008)

Stabilization of the wave equation with boundary or internal distributed delay Differential and Integral Equations, 21(9-10), 935-958.

S. Nicaise, J. Valein, and E. Fridman (2009)

Stability of the heat and of the wave equations with boundary time-varying delays Discrete and Continuous Dynamical Systems, Series S, 2(3), 559.

S. Pohjolainen (1982)

Robust multivariable PI-controller for infinite dimensional systems IEEE Transactions on Automatic Control, 27(1), 17-30.

S. Pohjolainen (1985)

Robust controller for systems with exponentially stable strongly continuous semigroups Journal of mathematical analysis and applications, 111(2), 622-636.

C. Prieur and E. Trélat (2018)

Feedback stabilization of a 1-D linear reaction–diffusion equation with delay boundary control IEEE Transactions on Automatic Control, 64(4), 1415-1425.

D. Russel (1978)

Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions SIAM Review, 20(4), 639-739.

O. Solomon and E. Fridman (2015)

Stability and passivity analysis of semilinear diffusion PDEs with time-delays International Journal of Control, 88(1), 180-192.

-

< □ > < 同 > < 三 > <

A. Terrand-Jeanne, V. D. S. Martins, and V. Andrieu (2018)

Regulation of the downside angular velocity of a drilling string with a PI controller In 2018 European Control Conference (ECC) (pp. 2647-2652).

A. Terrand-Jeanne, V. Andrieu, V. D. S. Martins, and C. Xu (2019)

Adding integral action for open-loop exponentially stable semigroups and application to boundary control of PDE systems

IEEE Transactions on Automatic Control.

N. T. Trinh, V. Andrieu, and C. Z. Xu (2017)

Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations IEEE Transactions on Automatic Control, 62(9), 4527-4536.

C. Z. Xu and H. Jerbi (1995)

A robust PI-controller for infinite-dimensional systems International Journal of Control, 61(1), 33-45.

C. Z. Xu and G. Sallet (2014)

Multivariable boundary PI control and regulation of a fluid flow system Mathematical Control and Related Fields, vol. 4, no. 4, pp. 501–520, 2014.

< ∃ ►

This presentation has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3872 and is co-funded under the European Regional Development Fund and by I-Form industry partners.

Ireland's European Structural and Investment Funds Programmes 2014-2020

Co-funded by the Irish Government and the European Union

European Union

< □ > < 凸

European Regional Development Fund

