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Delay boundary control of PDEs

Topic: stability and stabilization of PDEs in the presence of a delay in the
boundary conditions.
[Nicaise and Valein, 2007], [Nicaise and Pignotti, 2008] [Krstic, 2009],
[Nicaise, Valein, and Fridman, 2009] [Fridman, Nicaise, and Valein, 2010],
[Prieur and Trélat, 2018].

Objective: boundary stabilization and regulation control of open-loop
unstable PDEs in the presence of a long input delay.

Example: reaction-diffusion equation

yt = yxx + cy

y(t, 0) = 0, y(t, L) = u(t − D)

y(0, x) = y0(x)

[Krstic, 2009] - backstepping design.

[Prieur and Trélat, 2018] - spectral reduction and predictor feedback.
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Boundary control of PDEs in the presence of a state-delay

Topic: stability and stabilization of PDEs in the presence of a state-delay.
[Fridman and Orlov, 2009], [Solomon and Fridman, 2015],
[Hashimoto and Krstic, 2016], [Kang and Fridman, 2017],
[Kang and Fridman, 2018].

Objective: boundary stabilization of open-loop unstable PDEs in the
presence of a state-delay delay.

Example: reaction-diffusion equation

yt(t, x) = yxx(t, x) + a(x)y(t, x) + by(t − h, x)

y(t, 0) = 0, y(t, L) = u(t)

y(0, x) = y0(x)

[Hashimoto and Krstic, 2016] - backstepping design.

[Kang and Fridman, 2017] - Dirichlet/Neumann boundary conditions
and time-varying delay - backstepping design.
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Spectral reduction methods for control of PDEs

Spectral reduction and finite-dimensional feedback:

1 Spectral reduction.

2 Keep a finite number of modes to build a finite-dimensional truncated
model capturing the unstable dynamics of the original PDE.

3 Design a controller for the truncated model.

4 Check that the proposed controller successfully stabilizes the original
infinite-dimensional systems.

Early occurrences of this control design method: [Russell, 1978],
[Coron and Trélat, 2004], [Coron and Trélat, 2006], etc.

Extension to delay boundary control of a reaction-diffusion equation:
[Prieur and Trélat, 2018] by using a predictor feedback [Artstein, 1982]
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Abstract boundary control system

H is a separable Hilbert space on K, which is either R or C.

dX

dt
(t) = AX (t) + p(t), t ≥ 0

BX (t) = u(t), t ≥ 0

X (0) = X0

A : D(A) ⊂ H → H a linear (unbounded) operator;

B : D(B) ⊂ H → Km with D(A) ⊂ D(B) a linear boundary operator;

p : R+ → H a distributed disturbance;

u : R+ → Km the boundary control.
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Abstract boundary control system

H is a separable Hilbert space on K, which is either R or C.

dX

dt
(t) = AX (t) + p(t), t ≥ 0

BX (t) = u(t), t ≥ 0

X (0) = X0

We assume that (A,B) is a boundary control system
[Curtain and Zwart, 1995]:

1 the disturbance-free operator A0, defined on the domain
D(A0) , D(A) ∩ ker(B) by A0 , A|D(A0), is the generator of a
C0-semigroup S on H;

2 there exists a bounded operator L ∈ L(Km,H), called a lifting
operator, such that R(L) ⊂ D(A), AL ∈ L(Km,H), and BL = IKm .
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Assumed diagonal structure for A0

A1) A0 is a Riesz-spectral operator, i.e. it has simple eigenvalues λn with
corresponding eigenvectors φn ∈ D(A0), n ∈ N∗ that satisfy:

1 {φn, n ∈ N∗} is a Riesz basis:
1 spanK

n∈N∗
φn = H;

2 there exist constants mR ,MR ∈ R∗+ such that for all N ∈ N∗ and all
α1, . . . , αN ∈ K,

mR

N∑
n=1

|αn|2 ≤

∥∥∥∥∥
N∑

n=1

αnφn

∥∥∥∥∥
2

H

≤ MR

N∑
n=1

|αn|2.

2 The closure of {λn, n ∈ N∗} is totally disconnected, i.e. for any
distinct a, b ∈ {λn, n ∈ N∗}, [a, b] 6⊂ {λn, n ∈ N∗}.

A2) There exist N0 ∈ N∗ and α ∈ R∗+ such that Reλn ≤ −α for all
n ≥ N0 + 1.
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Spectral reduction

Let {ψn, n ∈ N∗} be the dual Riesz-basis of {φn, n ∈ N∗}, i.e.,
〈φk , ψl〉H = δk,l for all k , l ≥ 1.

We define xn(t) , 〈X (t), ψn〉H the coefficients of the projection of X (t)
into the Riesz basis {φn, n ∈ N∗}.

X (t) =
∑
n≥1

xn(t)φn

mR

∑
n≥1

|xn(t)|2 ≤ ‖X (t)‖2 ≤ MR

∑
n≥1

|xn(t)|2H

Dynamics of the coefficients of projection:

ẋn(t) = λnxn(t) + 〈(A− λnIH)Lu(t), ψn〉H + 〈p(t), ψn〉H
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Finite dimensional truncated model

Ẏ (t) = AY (t) + Bu(t) + P(t),

where

A = diag(λ1, . . . , λN0) ∈ KN0×N0

B = (bn,k)1≤n≤N0,1≤k≤m ∈ KN0×m

with bn,k = 〈(A− λnIH)Lek , ψn〉H and (e1, e2, . . . , em) the canonical basis
of Km,

Y (t) =

 x1(t)
...

xN0(t)

 =

 〈X (t), ψ1〉H
...

〈X (t), ψN0〉H

 , P(t) =

 〈p(t), ψ1〉H
...

〈p(t), ψN0〉H


A3) We assume that (A,B) is stabilizable.
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Closed-loop dynamics and stability result

Closed-loop system dynamics with predictor feedback synthesized based on
the truncated model:

dX

dt
(t) = AX (t) + p(t),

BX (t) = KY (t),

X (0) = X0

with gain K ∈ Km×N0 such that Acl , A + BK is Hurwitz.

Stability result

There exist constants κ,C1,C2 > 0 such that

‖X (t)‖H + ‖u(t)‖ ≤ C1e
−κt‖X0‖H + C2 sup

τ∈[0,t]
‖p(τ)‖H
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Sharp introduction to the concept of predictor feedback

Objective: stabilization of LTI plants in the presence of an input delay
D > 0:

ẋ(t) = Ax(t) + Bu(t − D), t ≥ 0,

for a stabilizable pair (A,B).

Idea: setting u(t − D) = Kx(t) we have:

ẋ(t) = Aclx(t)

where K is selected such that Acl = A + BK is Hurwitz.

Predictor component: the control input at time t takes the form of
u(t) = Kx(t + D); we need to predict x(t + D) from x(t):

x(t + D) = eDA
{
x(t) +

∫ t

t−D
e(t−D−s)ABu(s)ds

}
.

Reference: seminal work [Artstein, 1982].
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Extension to diagonal infinite-dimensional systems?

Positive answer for the reaction-diffusion system:

yt = yxx + c(x)y

y(t, 0) = 0, y(t, L) = u(t − D)

y(0, x) = y0(x)

reported in [Prieur and Trélat, 2018] for a constant and known input delay
D > 0.

Possible extension to:

General Sturm-Liouville operator?

Dirichlet/Neumann/Robin boundary condition and boundary control?

Robustness issues:

Uncertain and time-varying input delay D(t)?
Boundary and distributed perturbations?

Extension to diagonal infinite-dimensional systems?
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2 Stabilization with delayed boundary control
Case of a constant and known input delay
Case of an uncertain and time-varying input delay
Extensions
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Problem setting

H is a separable Hilbert space on K, which is either R or C.

dX

dt
(t) = AX (t) + p(t), t ≥ 0

BX (t) = u(t − D), t ≥ 0

X (0) = X0

Assumptions:

(A,B) is a boundary control system.

Assumption A1 holds: the disturbance free operator A0 is diagonal in
a Riesz basis.

Assumption A2 holds: A0 admits a finite number of unstable modes
while the real part of the stable ones do not accumulate at 0.

The control input u(t) ∈ Km is subject to a constant and known
delay D > 0.

H. Lhachemi Stabilization of delayed PDEs 11 July 2020 16 / 93



Finite dimensional truncated model

Ẏ (t) = AY (t) + Bu(t − D) + P(t),

where

A = diag(λ1, . . . , λN0) ∈ KN0×N0

B = (bn,k)1≤n≤N0,1≤k≤m ∈ KN0×m

with bn,k = 〈(A− λnIH)Lek , ψn〉H and (e1, e2, . . . , em) the canonical basis
of Km,

Y (t) =

 x1(t)
...

xN0(t)

 =

 〈X (t), ψ1〉H
...

〈X (t), ψN0〉H

 , P(t) =

 〈p(t), ψ1〉H
...

〈p(t), ψN0〉H


A3) We assume that (A,B) is stabilizable.
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Closed-loop dynamics and main result

Closed-loop system dynamics with predictor feedback synthesized based on
the truncated model:

dX

dt
(t) = AX (t) + p(t),

BX (t) = u(t − D),

u(t) = ϕ(t)K

{
Y (t) +

∫ t

max(t−D,0)
e(t−s−D)ABu(s) ds

}
,

X (0) = X0

with gain K ∈ Km×N0 such that Acl , A + e−DABK is Hurwitz.

Stability result [H. Lhachemi and Prieur, 2021]

There exist constants κ,C1,C2 > 0 such that

‖X (t)‖H + ‖u(t)‖ ≤ C1e
−κt‖X0‖H + C2 sup

τ∈[0,t]
‖p(τ)‖H
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Sketch of proof

Proof based on the Lyapunov functional:

V (t) = γ1

{
Z (t)∗PZ (t) +

∫ t

t−D
ϕ(s)Z (s)∗PZ (s) ds

}
+ γ2ϕ(t − D)Z (t − D)∗PZ (t − D)

+
1

2

∑
k≥N0+1

|〈X (t)− Bu(t − D), ψk〉H|
2 ,

where (Artstein transformation [Artstein, 1982])

Z (t) , Y (t) +

∫ t

t−D
e(t−s−D)ABu(s)ds

with P � 0 such that A∗clP + PAcl = −IN0 and γ1, γ2 > 0 are sufficiently
large constants.
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2 Stabilization with delayed boundary control
Case of a constant and known input delay
Case of an uncertain and time-varying input delay
Extensions
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Problem setting

H is a separable Hilbert space on K, which is either R or C.

dX

dt
(t) = AX (t), t ≥ 0

BX (t) = u(t − D(t)), t ≥ 0

X (0) = X0

Assumptions:

(A,B) is a boundary control system.

Assumption A1 holds: the disturbance free operator A0 is diagonal in
a Riesz basis.

Assumption A2 holds: A0 admits a finite number of unstable modes
while the real part of the stable ones do not accumulate at 0.

The control input u(t) ∈ Km is subject to an uncertain and
time-varying delay D(t) > 0.
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Finite dimensional truncated model

Ẏ (t) = AY (t) + Bu(t − D(t)),

where

A = diag(λ1, . . . , λN0) ∈ KN0×N0

B = (bn,k)1≤n≤N0,1≤k≤m ∈ KN0×m

with bn,k = 〈(A− λnIH)Lek , ψn〉H and (e1, e2, . . . , em) the canonical basis
of Km,

Y (t) =

 x1(t)
...

xN0(t)

 =

 〈X (t), ψ1〉H
...

〈X (t), ψN0〉H


A3) We assume that (A,B) is stabilizable.
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Robustness of constant delay predictor feedback

ẋ(t) = Ax(t) + Bu(t − D(t)), t ≥ 0,

with A ∈ Rn×n and B ∈ Rn×m such that (A,B) is stabilizable.

Uncertain and time-varying input delay D ∈ C0(R+;R+).

We assume that there exist known constants D0 > 0 and 0 < δ < D0 such
that |D(t)− D0| ≤ δ.

Constant-delay linear predictor feedback:

u(t) = K

{
x(t) +

∫ t

t−D0

e(t−D0−s)ABu(s)ds

}
where K ∈ Rm×n is such that Acl = A + e−D0ABK is Hurwitz.

Sufficient condition on δ > 0 such that the closed-loop system is stable?

H. Lhachemi Stabilization of delayed PDEs 11 July 2020 23 / 93



Preliminary Lemma

The following preliminary Lemma is a variation of [Fridman, 2006].

Lemma

Let M,N ∈ Rn×n, D0 > 0, and δ ∈ (0,D0) be given. Assume that there
exist κ > 0, P1,Q ∈ S+∗

n , and P2,P3 ∈ Rn×n such that Θ(δ, κ) � 0 with

Θ(δ, κ) =

2κP1 + M>P2 + P>2 M P1 − P>2 + M>P3 δP>2 N
P1 − P2 + P>3 M −P3 − P>3 + 2δQ δP>3 N

δN>P2 δN>P3 −δe−2κD0Q

 .
Then, there exists C0 > 0 such that, for any D ∈ C0(R+;R+) with
|D − D0| ≤ δ, the trajectory x of:

ẋ(t) = Mx(t) + N {x(t − D(t))− x(t − D0)} ;

x(τ) = x0(τ), τ ∈ [−D0 − δ, 0]

with initial condition x0 ∈W satisfies ‖x(t)‖ ≤ C0e
−κt‖x0‖W for all t ≥ 0.
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Sketch of proof

We define V (t) = V1(t) + V2(t) with V1(t) = x(t)>P1x(t) and

V2(t) =

∫ −D0+δ

−D0−δ

∫ t

t+θ
e2κ(s−t)ẋ(s)>Qẋ(s)ds dθ

where P1,Q ∈ S+∗
n .

We have the inequalities:

λm(P1)‖x(t)‖2 ≤ V (t) ≤ max (λM(P1), 2δλM(Q)) ‖x(t + ·)‖2
W

The computation of the time derivative of V yields

V̇ (t) = 2x(t)>P1ẋ(t) + 2δẋ(t)>Qẋ(t)− 2κV2(t)

−
∫ −D0+δ

−D0−δ
e2κθẋ(t + θ)>Qẋ(t + θ)dθ
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Sketch of proof

Introducing P =

[
P1 0
P2 P3

]
with the slack variables P2,P3 ∈ Rn×n:

V̇ (t) + 2κV (t) ≤
[
x(t)
ẋ(t)

]>
Ψ

[
x(t)
ẋ(t)

]
,

where

Ψ , P>
[

0 I
M −I

]
+

[
0 I
M −I

]>
P + 2

[
κP1 0

0 δQ

]
+ δe2κD0P>

[
0
N

]
Q−1

[
0
N

]>
P.

From Θ(δ, κ) � 0, the use of the Schur complement yields
V̇ (t) + 2κV (t) ≤ 0.
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Useful “converse” result

The conclusions of the previous Lemma imply that the matrix M is
Hurwitz. A form of “converse” result is provided below.

Lemma

Let M,N ∈ Rn×n with M Hurwitz and D0 > 0 be given. Then there exist
δ ∈ (0,D0) and κ > 0 such that the LMI Θ(δ, κ) ≺ 0 is feasible.

Hence M Hurwitz implies the existence of small enough deviations of the
delay around its nominal value such that the system is exponentially stable.
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Robustness of predictor feedback

Theorem [Lhachemi, Prieur, and Shorten, 2019]

Let A ∈ Rn×n and B ∈ Rn×m with (A,B) stabilizable. Let D0 > 0 and let
ϕ be a transition signal over [0, t0] with t0 > 0. Let K ∈ Rm×n be such
that Acl , A + e−D0ABK is Hurwitz. Then, there exist δ ∈ (0,D0) such
that for any D ∈ C0(R+;R+) with |D − D0| ≤ δ,

ẋ(t) = Ax(t) + Bu(t − D(t)),

u(t) = ϕ(t)K

{
x(t) +

∫ t

t−D0

e(t−D0−s)ABu(s)ds

}
,

with initial condition x(0) = x0 ∈ Rn is exponentially stable:

‖x(t)‖+ ‖u(t)‖ ≤ Ce−κt‖x0‖, ∀t ≥ 0.

The above conclusion holds true for any δ ∈ (0,D0) and any κ > 0 such
that the LMI Θ(δ, κ) � 0 is feasible with M = Acl and N = BK .
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Sketch of proof

The introduction of the Artstein transformation

z(t) = x(t) +

∫ t

t−D0

e(t−D0−s)ABu(s) ds

yields, for times t ≥ t0 + D0 + δ,

ż(t) = Aclz(t) + BK{z(t − D(t))− z(t − D0)}

with Acl = A + e−D0ABK Hurwitz.

The claimed conclusion easily follows from the preliminary lemma.
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Application to diagonal infinite-dimensional systems

Predictor feedback synthesized based on the truncated model:

dX

dt
(t) = AX (t),

BX (t) = u(t − D(t)),

u(t) = ϕ(t)K

{
Y (t) +

∫ t

max(t−D0,0)
e(t−s−D0)ABu(s)ds

}
,

X (0) = X0

with gain K ∈ Km×N0 such that Acl , A + e−D0ABK is Hurwitz.

Stability result [Lhachemi, Prieur, and Shorten, 2019]

There exist δ, η > 0 such that, for any δr > 0, there exists C > 0 such that
for any X0 ∈ D(A0) and D ∈ C2(R+;R+) with |D −D0| ≤ δ and |Ḋ| ≤ δr ,

‖X (t)‖H + ‖u(t)‖ ≤ Ce−ηt‖X0‖H
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Numerical example

Consider the following reaction-diffusion equation:
yt(t, x) = ayxx(t, x) + cy(t, x), (t, x) ∈ R+ × (0, L)[
y(t, 0)
y(t, L)

]
= u(t − D(t)), t > 0

Numerical setting:

system parameters: a = c = 0.5, L = 2π, D0 = 1 s;

first eigenvalues: λ1 = 0.375, λ2 = 0, λ3 = −0.625, λ4 = −1.5;

control design: N0 = 3, gain K ∈ R2×3 is computed to place the
poles of the closed-loop truncated model at −0.75, −1, and −1.25.

Application of the main theorem: exponential stability of the
closed-loop system with decay rate κ = 0.2 for δ = 0.260.
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Numerical example
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2 Stabilization with delayed boundary control
Case of a constant and known input delay
Case of an uncertain and time-varying input delay
Extensions
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Extension 1: ISS w.r.t. boundary disturbances

Closed-loop system dynamics with boundary disturbances d1, d2:

dX

dt
(t) = AX (t),

BX (t) = u(t − D(t)) + d1(t),

u(t) = ϕ(t)

{
KY (t) + K

∫ t

max(t−D0,0)
e(t−s−D0)ABu(s) ds + d2(t)

}
,

X (0) = X0

with gain K ∈ Km×N0 such that Acl , A + e−D0ABK is Hurwitz.

Stability result [Lhachemi, Shorten, and Prieur, 2020]

Assume in addition that supn≥N0+1 |λn/Reλn| < +∞. Then there exist
constants δ, κ,Ci > 0 such that, for any X0 ∈ H, D ∈ C1(R+;R+) with
|D − D0| ≤ δ, and di ∈ C0(R+;Km),

‖X (t)‖H + ‖u(t)‖ ≤ C1e
−κt‖X0‖H + C2 sup

τ∈[0,t]
‖(d1(τ), d2(τ))‖
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Extension 2: distinct input delays

Case of distinct uncertain and time-varying input delays Dk(t):

dX

dt
(t) = AX (t),

BX (t) = ũ(t) = (u1(t − D1(t)), . . . , um(t − Dm(t))),

u(t) = ϕ(t)K

{
Y (t) +

∑m

i=1

∫ t

t−D0,i

e(t−D0,i−s)AN0BN0,iui (s) ds

}
,

X (0) = X0,

with Kk ∈ K1×N0 such that Acl = AN0 +
∑m

k=1 e
−D0,kAN0BN0,kKk is

Hurwitz.

Stability result [Lhachemi, Prieur, and Shorten, 2020]

There exist δk , η > 0 such that, for any δr > 0, there exists C > 0 such
that for any X0 ∈ D(A0) and Dk ∈ C2(R+;R+) with |Dk −D0,k | ≤ δk and
|Ḋk | ≤ δr ,

‖X (t)‖H + ‖u(t)‖ ≤ Ce−ηt‖X0‖H
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Problem setting

Let a > 0, let b, c ∈ R, and let θ1, θ2 ∈ [0, 2π) be arbitrary.

yt(t, x) = ayxx(t, x) + by(t, x) + cy(t − h(t), x) + p(t, x)

cos(θ1)y(t, 0)− sin(θ1)yx(t, 0) = u1(t)

cos(θ2)y(t, 1) + sin(θ2)yx(t, 1) = u2(t)

y(τ, x) = φ(τ, x), τ ∈ [−hM , 0]

t ≥ 0, x ∈ (0, 1).

y(t, ·) ∈ L2(0, 1) is the state at time t;

u1(t), u2(t) ∈ R are the control inputs

⇒ with possibly one single control input (i.e., either u1 = 0 or u2 = 0);

p ∈ L∞loc(R+; L2(0, 1)) is a distributed disturbance;

h ∈ C0(R+;R+) with 0 < hm ≤ h(t) ≤ hM is a time-varying delay;

φ ∈ C0([−hM , 0]; L2(0, 1)) is the initial condition.
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Equivalent representation

We rewrite the reaction-diffusion system under the form:

yt(t, x) = ayxx(t, x) + (b + c)y(t, x)

+ c {y(t − h(t), x)− y(t, x)}+ p(t, x)

cos(θ1)y(t, 0)− sin(θ1)yx(t, 0) = u1(t)

cos(θ2)y(t, 1) + sin(θ2)yx(t, 1) = u2(t)

y(τ, x) = φ(τ, x), τ ∈ [−hM , 0]

Interpretation:

cy(t, x) is viewed as the “nominal contribution” of the term
cy(t − h(t), x);

c {y(t − h(t), x)− y(t, x)} is viewed as a “disturbance term”
introduced by the occurrence of the delay h(t).
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Abstract formulation of the problem

We define X (t) = y(t, ·), H = L2(0, 1), and Af = af ′′ + (b + c)f and
Bf = (cos(θ1)f (0)− sin(θ1)f ′(0), cos(θ2)f (1) + sin(θ2)f ′(1)) ∈ R2 defined
on D(A) = D(B) = H2(0, 1).

dX

dt
(t) = AX (t) + c{X (t − h(t))− X (t)}+ p(t), t ≥ 0

BX (t) = u(t) = (u1(t), u2(t)), t ≥ 0

X (τ) = Φ(τ), τ ∈ [−hM , 0]

Key properties: A0 is self-adjoint, has compact resolvent, and has simple
eigenvalues. Hence we have a Hilbert basis (en)n≥1 of L2(0, L) consisting
of eigenfunctions of A0 associated with the sequence of simple real
eigenvalues

−∞ < · · · < λn < · · · < λ1
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Spectral reduction of the problem

Introducing the coefficients of projection xn(t) = 〈X (t), en〉, the system
trajectory can be expanded as a series in the eigenfunctions en, convergent
in L2(0, 1),

X (t) =
∑
n≥1

xn(t)en.

Equivalent infinite-dimensional control system:

ẋn(t) = λnxn(t)+c {xn(t − h(t))− xn(t)}
+ 〈(A− λn)Lu(t), en〉+ 〈p(t), en〉

n ≥ 1, with
‖X (t)‖2 =

∑
n≥1

|xn(t)|2.

H. Lhachemi Stabilization of delayed PDEs 11 July 2020 41 / 93



Finite dimensional truncated model

For a number of modes N0 ≥ 0 to be determined latter:

Ẏ (t) = AY (t)+c{Y (t − h(t))− Y (t)}+ Bu(t) + P(t),

where

A = diag(λ1, . . . , λN0) ∈ RN0×N0

B = (bn,k)1≤n≤N0,1≤k≤2 ∈ RN0×2

with bn,k = 〈(A− λn)Lfk , en〉H and (f1, f2) the canonical basis of R2,

Y (t) =

 x1(t)
...

xN0(t)

 =

 〈X (t), e1〉H
...

〈X (t), eN0〉H

 , P(t) =

 〈p(t), e1〉H
...

〈p(t), eN0〉H


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Representation for control design and stability analysis

Final representation of the reaction-diffusion equation for control design
and stability analysis:

Ẏ (t) = AY (t)+c{Y (t − h(t))− Y (t)}+ Bu(t) + P(t)

ẋn(t) = λnxn(t)+c {xn(t − h(t))− xn(t)}
+ 〈(A− λn)Lu(t), en〉+ 〈p(t), en〉

with n ≥ N0 + 1.

Two-step control design strategy:

1 Select the number N0 of modes captured by the truncated model to
ensure the exponential stability of the residual dynamics.

2 For an arbitrarily given number of modes N0, design a feedback law
ensuring the exponential stability of the truncated model.
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Control strategy for the finite-dimensional truncated model

Truncated model for an arbitrarily given number of modes N0:

Ẏ (t) = AY (t) + c{Y (t − h(t))− Y (t)}+ Bu(t) + P(t)

Lemma

The pair (A,B) satisfies the Kalman condition.

(⇒ also holds in the case of one single boundary control input)

Setting
u(t) = KY (t)

we have

Ẏ (t) = AclY (t) + c{Y (t − h(t))− Y (t)}+ P(t)

with Acl = A + BK Hurwitz.
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Stability of the closed-loop truncated model

Lemma (truncated model)

Let N0 ≥ 1 and 0 < hm < hM be arbitrarily given. Let K ∈ R2×N0 be such
that Acl = A + BK is Hurwitz with simple eigenvalues µ1, . . . , µN0 ∈ C
and Reµn < −3|c| for all 1 ≤ n ≤ N0. Then, there exist constants
σ,C2,C3 > 0 such that, for all YΦ ∈ C0([−hM , 0];RN0), h ∈ C0(R+;R)
with hm ≤ h ≤ hM , and P ∈ L∞loc(R+;RN0), the trajectory Y (t) of the
truncated model with command input u(t) = KY (t) satisfies

‖Y (t)‖ ≤ C2e
−σt sup

τ∈[−hM ,0]
‖YΦ(τ)‖+ C3 ess sup

τ∈[0,t]
e−σ(t−τ)‖P(τ)‖.
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Sketch of proof

As the eigenvalues of Acl are simple, there exists Q ∈ CN0×N0 such that
QAclQ

−1 = Λ , diag(µ1, . . . , µN0).

With Z (t) = QY (t) and P̂(t) = QP(t), we obtain:

Ż (t) = ΛZ (t) + c {Z (t − h(t))− Z (t)}+ P̂(t).

Introducing v(t) = Z (t)− Z (t − h(t)), successive estimates yield

sup
τ∈[hM ,t]

eστ‖v(τ)‖ ≤ 2eσhM‖ZΦ(0)‖+ δ sup
τ∈[0,hM ]

eστ‖v(τ)‖

+ δ sup
τ∈[hM ,t]

eστ‖v(τ)‖+
δ

|c|
ess sup
τ∈[0,t]

eστ‖P̂(τ)‖

for all t ≥ hM with α = − max
1≤n≤N0

Reµn > 3|c |, σ ∈ (0, α) arbitrary, and

δ =
|c |

α− σ

{
1 + 2eσhM

}
∼

σ→0+

3|c |
α

< 1.
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Sketch of proof

Selecting σ ∈ (0, α) small enough such that δ < 1, we infer

sup
τ∈[hM ,t]

eστ‖v(τ)‖ ≤ 2eσhM

1− δ
‖ZΦ(0)‖+

δ

1− δ
sup

τ∈[0,hM ]
eστ‖v(τ)‖

+
δ

|c |(1− δ)
ess sup
τ∈[0,t]

eστ‖P̂(τ)‖

for all t ≥ hM .

The conclusion follows by 1) estimating supτ∈[0,hM ] e
στ‖v(τ)‖; 2) using

the estimate:

sup
τ∈[0,t]

eστ‖Z (τ)‖ ≤ ‖ZΦ(0)‖+
|c |

α− σ
sup
τ∈[0,t]

eστ‖v(τ)‖

+
1

α− σ
ess sup
τ∈[0,t]

eστ‖P̂(τ)‖

for all t ≥ 0; and 3) Y (t) = Q−1Z (t).
H. Lhachemi Stabilization of delayed PDEs 11 July 2020 48 / 93



3 Boundary stabilization in the presence of a state-delay
Spectral reduction
Control design on the truncated model
Stability assessment of the infinite-dimensional system
Numerical application

H. Lhachemi Stabilization of delayed PDEs 11 July 2020 49 / 93



Stability of the infinite-dimensional residual dynamics

Lemma (residual infinite-dimensional dynamics)

Let 0 < hm < hM and σ,C4,C5 > 0 be arbitrarily given. Let N0 ≥ 1 be
such that λN0+1 < −2

√
5|c |. Then, there exist constants κ ∈ (0, σ) and

C6,C7 > 0 such that, for all Φ ∈ C0([−hM , 0];H), p ∈ L∞loc(R+;H),
h ∈ C0(R+;R) with hm ≤ h ≤ hM , and u ∈ ACloc(R+;R2) with

‖u(t)‖+ ‖u̇(t)‖ ≤ C4e
−σt sup

τ∈[−hM ,0]
‖Φ(τ)‖

+ C5 ess sup
τ∈[0,t]

e−σ(t−τ)‖p(τ)‖,

we have ∑
n≥N0+1

|xn(t)|2 ≤ C6e
−2κt sup

τ∈[−hM ,0]
‖Φ(τ)‖2

+ C7 ess sup
τ∈[0,t]

e−2κ(t−τ)‖p(τ)‖2.
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Sketch of proof

Introducing zn(t) = 〈X (t)− Lu(t), en〉 = xn(t)− 〈Lu(t), en〉 and

V (t) =
∑

n≥N0+1

|zn(t)− zn(t − h(t))|2,

successive estimates yield, for t ≥ 2hM ,

sup
τ∈[2hM ,t]

e2κτV (τ) ≤ 16e4κhMZ (hM) + η sup
τ∈[hM ,2hM ]

e2κτV (τ)

+ η sup
τ∈[2hM ,t]

e2κτV (τ) +
γ1η

|c |2
sup

τ∈[−hM ,0]
‖Φ(τ)‖2

+
(1 + γ2)η

|c |2
ess sup
τ∈[0,t]

e2κτ‖p(τ)‖2.

with β = −λN0+1/2 >
√

5|c| and

η =
|c |2

β(β − κ)

{
1 + 4e2κhM

}
∼

κ→0+

5|c |2

β2
< 1.
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Stability of the closed-loop reaction-diffusion equation

Theorem [Lhachemi and Shorten, 2020]

Let 0 < hm < hM be arbitrarily given. Let N0 ≥ 1 be such that
λN0+1 < −2

√
5|c|. Let K ∈ R2×N0 be such that Acl = A + BK is Hurwitz

with simple eigenvalues µ1, . . . , µN0 ∈ C satisfying Reµn < −3|c | for all
1 ≤ n ≤ N0. Then, there exist constants κ,C0,C1 > 0 such that, for any
initial condition φ ∈ C0([−hM , 0]; L2(0, 1)), any distributed perturbation
p ∈ L∞loc(R+; L2(0, 1)), and any delay h ∈ C0(R+;R) with hm ≤ h ≤ hM ,
the state-delayed reaction diffusion equation with u = KY satisfies

‖y(t, ·)‖ ≤ C0e
−κt sup

τ∈[−hM ,0]
‖φ(τ, ·)‖+ C1 ess sup

τ∈[0,t]
e−κ(t−τ)‖p(τ, ·)‖

for all t ≥ 0.
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Numerical application

yt(t, x) = ayxx(t, x) + by(t, x) + cy(t − h(t), x) + p(t, x)

cos(θ1)y(t, 0)− sin(θ1)yx(t, 0) = u1(t)

cos(θ2)y(t, 1) + sin(θ2)yx(t, 1) = u2(t)

y(τ, x) = φ(τ, x), τ ∈ [−hM , 0]

t ≥ 0, x ∈ (0, 1).

Numerical setting:

system parameters: a = 0.2, b = 2, c = 1, θ1 = π/3, and θ2 = π/10;

first eigenvalues: λ1 ≈ 2.5561, λ2 ≈ −0.1186 > −2
√

5|c |, and
λ3 ≈ −6.2299 < −2

√
5|c |;

control design: N0 = 2, gain K ∈ R2×2 is computed to place the
poles of the closed-loop truncated model at µ1 = −3.5 and µ2 = −4
with in particular µ2 < µ1 < −3|c |;
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Numerical example
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Distributed disturbance: p(t, x) = d0(t)(1− x).

Initial condition:
Φ(t, x) = (1− t)2 {(1− 2x)/2 + 20x(1− x)(x − 3/5)}.
Delay: h(t) = 2 + 1.5 sin(t) .
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PI regulation of infinite-dimensional systems

PI controller: classical control architecture widely used by the industry
for stabilization and regulation control.

The extension of PI control design to infinite-dimensional systems has
attracted much attention in the recent years.

Early attempts:

bounded control operators [Pohjolainen, 1982] [Pohjolainen, 1985];

unbounded control operators [Xu and Jerbi, 1995].

H. Lhachemi Stabilization of delayed PDEs 11 July 2020 57 / 93



PI regulation control of PDEs

State-of-the-art:

PI boundary control of linear hyperbolic systems:
[Bastin, Coron, and Tamasoiu, 2015]
[Dos Santos, Bastin, Coron, and d’Andréa-Novel, 2008]
[Lamare and Bekiaris-Liberis, 2015] [Xu and Sallet, 2014]

PI boundary controller for 1-D nonlinear transport equation:
[Trinh, Andrieu, and Xu, 2017] [Coron and Hayat, 2019]

PI regulation control of drilling systems:
[Barreau, Gouaisbaut, and Seuret, 2019]
[Terrand-Jeanne, Martins, and Andrieu, 2018]

Add of an integral component to open-loop exponentially stable
semigroups: [Terrand-Jeanne, Andrieu, Martins, and Xu (2019)]

Objective: PI regulation control of a 1-D reaction-diffusion equation.
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Problem setting

Let L > 0, let c ∈ L∞(0, L), and let D > 0 be arbitrary.

yt = yxx + c(x)y + d(x), (t, x) ∈ R∗+ × (0, L)

y(t, 0) = 0, t ≥ 0

y(t, L) = uD(t) , u(t − D), t ≥ 0

y(0, x) = y0(x), x ∈ (0, L)

y(t, ·) ∈ L2(0, L) is the state at time t;

u(t) ∈ R is the control input;

D > 0 is the (constant) control input delay;

d ∈ L2(0, L) is a stationary distributed disturbance;

y0 ∈ H2(0, L) with y0(0) = 0 and y0(L) = u(−D) is the initial
condition.
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Control design objective

Let L > 0, let c ∈ L∞(0, L), and let D > 0 be arbitrary.

yt = yxx + c(x)y + d(x), (t, x) ∈ R∗+ × (0, L)

y(t, 0) = 0, t ≥ 0

y(t, L) = uD(t) , u(t − D), t ≥ 0

y(0, x) = y0(x), x ∈ (0, L)

Control design objective:

Stabilization of the plant;

PI regulation of the left Neumann trace yx(t, 0) to some prescribed
constant reference input r ∈ R, i.e.,

yx(t, 0)→ r as t → +∞

Regulation in spite of of the stationary distributed disturbance d ;
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Augmented system for PI feedback control

Add of the integral state z(t)

yt = yxx + c(x)y + d(x), (t, x) ∈ R∗+ × (0, L)

ż(t) = yx(t, 0)− r , t ≥ 0

y(t, 0) = 0, t ≥ 0

y(t, L) = uD(t) , u(t − D), t ≥ 0

y(0, x) = y0(x), x ∈ (0, L)

z(0) = z0

The system is uncontrolled for negative times, i.e. u(t) = 0 for t < 0.

We assume that y0 ∈ H2(0, L) ∩ H1
0 (0, L).
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Equivalent homogeneous Dirichlet problem

The change of variable

w(t, x) = y(t, x)− x

L
uD(t)

yields the equivalent homogeneous Dirichlet problem:

wt = wxx + c(x)w +
x

L
c(x)uD −

x

L
u̇D + d(x)

ż(t) = wx(t, 0) +
1

L
uD(t)− r

w(t, 0) = w(t, L) = 0

w(0, x) = y0(x)− x

L
uD(0) = y0(x)

z(0) = z0
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Abstract formulation of the problem

Introducing the operator A = ∂xx + c id : D(A) ⊂ L2(0, L)→ L2(0, L)
defined on the domain D(A) = H2(0, L) ∩ H1

0 (0, L),

wt(t, ·) = Aw(t, ·) + a(·)uD(t) + b(·)u̇D(t) + d(·)

ż(t) = wx(t, 0) +
1

L
uD(t)− r

with a(x) = x
Lc(x) and b(x) = − x

L .

Key properties: A is self-adjoint, has compact resolvent, and has simple
eigenvalues. Hence we have a Hilbert basis (ej)j≥1 of L2(0, L) consisting of
eigenfunctions of A associated with the sequence of simple real eigenvalues

−∞ < · · · < λj < · · · < λ1

with (when j → +∞)

e ′j (0) ∼
√

2

L

√
|λj |, λj ∼ −

π2j2

L2
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Spectral reduction of the problem

Since w(0, ·) = y0 ∈ H2(0, L) ∩ H1
0 (0, L), the classical solution

w(t, ·) ∈ H2(0, L) ∩ H1
0 (0, L) can be expanded as a series in the

eigenfunctions ej(·), convergent in H1
0 (0, L),

w(t, ·) =
+∞∑
j=1

wj(t)ej(·).

Equivalent infinite-dimensional control system:

ẇj(t) = λjwj(t) + ajuD(t) + bj u̇D(t) + dj

ż(t) =
∑
j≥1

wj(t)e ′j (0) +
1

L
uD(t)− r

for j ∈ N∗, with wj(t) = 〈w(t, ·), ej〉, aj = 〈a, ej〉, bj = 〈b, ej〉, and
dj = 〈d , ej〉.
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Auxiliary control input v = u̇

Introducing the auxiliary control input v = u̇, and denoting
vD(t) , v(t − D),

u̇D(t) = vD(t)

ẇj(t) = λjwj(t) + ajuD(t) + bjvD(t) + dj

ż(t) =
∑
j≥1

wj(t)e ′j (0) +
1

L
uD(t)− r

for j ∈ N∗.

As u(t) = 0 for t < 0, we also have v(t) = 0 for t < 0 and the initial
condition uD(0) = 0.
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Finite-dimensional truncated model

Let N0 ∈ N∗ be such that λj ≥ 0 when 1 ≤ j ≤ N0 and λj ≤ λN0+1 < 0
when j ≥ N0 + 1. Introducing:

X1(t) =


uD(t)
w1(t)

...
wN0(t)

 , A1 =


0 0 · · · 0
a1 λ1 · · · 0
...

...
. . .

...
an 0 · · · λN0

 ,

B1 =
(
1 b1 . . . bN0

)>
,

D1 =
(
0 d1 . . . dN0

)>
,

the N0 first modes of the PDE are captured by

Ẋ1(t) = A1X1(t) + B1vD(t) + D1.
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Rewriting of the integral component
Integral component:

ż(t) =

N0∑
j=1

wj(t)e ′j (0)+
∑

j≥N0+1

wj(t)e ′j (0) +
1

L
uD(t)− r .

Change of variable (recall that
∣∣∣ e′j (0)

λj

∣∣∣2 ∼ 2L
π2j2 when j → +∞):

ζ(t) , z(t)−
∑

j≥N0+1

e ′j (0)

λj
wj(t),

whose time derivative is given by

ζ̇(t) = αuD(t) + βvD(t)− γ+

N0∑
j=1

wj(t)e ′j (0),

with

α =
1

L
−
∑

j≥N0+1

e ′j (0)

λj
aj , β = −

∑
j≥N0+1

e ′j (0)

λj
bj , , γ = r+

∑
j≥N0+1

e ′j (0)

λj
dj .
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Augmented truncated model

With X (t) =
[
X1(t)> ζ(t)

]> ∈ RN0+2 and the exogenous input

Γ =
[
D>1 −γ

]> ∈ RN0+2,

Ẋ (t) = AX (t) + Bv(t − D) + Γ

where

A =

(
A1 0
L1 0

)
∈ R(N0+2)×(N0+2), B =

(
B1

β

)
∈ RN0+2,

with
L1 =

(
α e ′1(0) . . . e ′N0

(0)
)
∈ R1×(N0+1).

H. Lhachemi Stabilization of delayed PDEs 11 July 2020 69 / 93



Representation for control design and stability analysis

Final representation of the reaction-diffusion equation augmented with the
integral component:

Ẋ (t) = AX (t) + Bv(t − D) + Γ

ẇj(t) = λjwj(t) + aju(t − D) + bjvD(t) + dj

with j ≥ N0 + 1.

Lemma

The pair (A,B) satisfies the Kalman condition.
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Control strategy

Design of a classical predictor feedback to stabilize the truncated model:

Ẋ (t) = AX (t) + Bv(t − D) + Γ.

Introducing the Artstein transformation [Artstein, 1982]

Z (t) = X (t) +

∫ t

t−D
eA(t−D−τ)Bv(τ) dτ,

we have
Ż (t) = AZ (t) + e−DABv(t) + Γ.

Let K ∈ R1×(N0+2) be such that AK = A + e−DABK is Hurwitz. Setting
v(t) = χ[0,+∞)(t)KZ (t), we obtain the stable closed-loop dynamics

Ż (t) = AKZ (t) + Γ.
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System in closed-loop

Closed-loop dynamics in X -coordinates:

Ẋ (t) = AX (t) + BvD(t) + Γ

ẇj(t) = λjwj(t) + ajuD(t) + bjvD(t) + dj , j ≥ N0 + 1

v(t) = χ[0,+∞)(t)K

(
X (t) +

∫ t

max(t−D,0)
eA(t−D−τ)Bv(τ)dτ

)

Closed-loop dynamics in Z -coordinates:

Ż (t) = AKZ (t) + Γ

ẇj(t) = λjwj(t) + ajuD(t) + bjvD(t) + dj , j ≥ N0 + 1

v(t) = χ[0,+∞)(t)KZ (t)
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Dynamics of deviations

The equilibrium condition of the closed-loop system is fully characterized
by:

the constant reference input r for the left Neumann trace yx(t, 0);

the stationary distributed disturbance d ∈ L2(0, L).

Dynamics of deviations in X -coordinates:

∆Ẋ (t) = A∆X (t) + B∆vD(t)

∆ẇj(t) = λj∆wj(t) + aj∆uD(t) + bj∆vD(t), j ≥ N0 + 1

∆v(t) = χ[0,+∞)(t)K

(
∆X (t) +

∫ t

max(t−D,0)
eA(t−D−τ)B∆v(τ)dτ

)

Similar result for the dynamics of deviations in Z -coordinates.
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Main stability result

Theorem (stability) [Lhachemi, Prieur, and Trélat, 2020]

There exist κ,C 1 > 0 such that

∆uD(t)2 + ∆ζ(t)2 + ‖∆w(t)‖2
H1

0 (0,L)

≤ C 1e
−2κt

(
∆uD(0)2 + ∆ζ(0)2 + ‖∆w(0)‖2

H1
0 (0,L)

)
, ∀t ≥ 0.

The proof of the Theorem relies on the following Lyapunov function:

V (t) =
M

2
∆Z (t)>P∆Z (t) +

M

2

∫ t

max(t−D,0)
∆Z (s)>P∆Z (s) ds

− 1

2

∑
j≥1

λj∆wj(t)2,

where P = P> ∈ R(N0+2)×(N0+2) is the solution of the Lyapunov equation
A>KP + PAK = −I and M > 0 is a constant chosen sufficiently large.
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Sketch of proof

Lemma 1
There exists a constant C1 > 0 such that

V (t) ≥ C1

∑
j≥1

(1 + |λj |)∆wj(t)2, ∀t ≥ 0

V (t) ≥ C1

(
∆uD(t)2 + ∆ζ(t)2 + ‖∆w(t)‖2

H1
0 (0,L)

)
, ∀t ≥ 0

V (t) ≥ C1‖∆Z (t)‖2, ∀t ≥ 0.

Lemma 2
There exist κ > 0 such that

V (t) ≤ e−2κ(t−D)V (D), ∀t ≥ D.

Lemma 3
There exists C2 > 0 such that

V (t) ≤ C2

(
∆uD(0)2 + ∆ζ(0)2 + ‖∆w(0)‖2

H1
0 (0,L)

)
, ∀t ∈ [0,D].
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Assessment of the reference tracking

Theorem (reference tracking) [Lhachemi, Prieur, and Trélat, 2020]

Let κ > 0 be provided by the previous stability Theorem. There exists
C 2 > 0 such that

|yx(t, 0)− r |

≤ C 2e
−κt

(
|∆uD(0)|+ |∆ζ(0)|+ ‖∆w(0)‖H1

0 (0,L) + ‖A∆w(0)‖L2(0,L)

)
.
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Sketch of proof

Since we,x(0) + 1
Lue = r , we have

|yx(t, 0)− r | =

∣∣∣∣wx(t, 0) +
1

L
uD(t)− r

∣∣∣∣
≤ |wx(t, 0)− we,x(0)|+ 1

L
|∆uD(t)|.

As e ′j (0) ∼
√

2
L

√
|λj |, there exists a constant γ7 > 0 such that

|e ′j (0)| ≤ γ7

√
|λj | for all j ≥ N0 + 1. For any m ≥ N0 + 1,

|wx(t, 0)− we,x(0)|

≤
m−1∑
j=1

|∆wj(t)||e ′j (0)|+ γ7

∑
j≥m

√
|λj ||∆wj(t)|

≤

√√√√m−1∑
j=1

e ′j (0)2

√√√√m−1∑
j=1

∆wj(t)2 + γ7

√∑
j≥m

1

|λj |

√∑
j≥m

λ2
j ∆wj(t)2
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Sketch of proof

It remains to study the term
√∑

j≥m λ
2
j ∆wj(t)2. Recall that

∆ẇj(t) = λj∆wj(t) + aj∆uD(t) + bj∆vD(t).

Hence, by direct integration (j ≥ m ≥ N0 + 1)

|λj∆wj(t)|

≤ eλj t |λj∆wj(0)|+
∫ t

0
(−λj)eλj (t−τ) {|aj ||∆uD(τ)|+ |bj ||∆vD(τ)|} dτ

Using the previous stability result, we obtain∑
j≥m

λ2
j ∆wj(t)2

≤ C 2
3 e
−2κt

(
|∆uD(0)|2 + |∆ζ(0)|2 + ‖∆w(0)‖2

H1
0 (0,L) + ‖A∆w(0)‖2

L2(0,L)

)
for some constant C3 > 0.
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Numerical application

yt = yxx + c(x)y + d(x), (t, x) ∈ R∗+ × (0, L)

y(t, 0) = 0, t ≥ 0

y(t, L) = u(t − D), t ≥ 0

y(0, x) = y0(x), x ∈ (0, L)

Numerical setting:

system parameters: c = 1.25, L = 2π, and D = 1 s;

first eigenvalues: λ1 = 1, λ2 = 0.25, λ3 = −1;

control design: N0 = 2, gain K ∈ R1×4 is computed to place the poles
of the closed-loop truncated model at −0.5, −0.6, −0.7, and −0.8;

reference: r = 50;

distributed disturbance: d(x) = x ;

initial condition: y0(x) = − x
L

(
1− x

L

)
;
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Numerical application
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Figure: Time evolution of the closed-loop system
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Extension 1: time-varying case

Let L > 0, let c ∈ L∞(0, L), and let D > 0 be arbitrary.

yt = yxx + c(x)y + d(t, x), (t, x) ∈ R∗+ × (0, L)

y(t, 0) = 0, t ≥ 0

y(t, L) = u(t − D), t ≥ 0

y(0, x) = y0(x), x ∈ (0, L)

PI control:

exponential input-to-state stabilization w.r.t. d(t, x);

setpoint regulation of the left Neumann trace yx(t, 0) to some
reference input r(t) ∈ R.

[Lhachemi, Prieur, and Trélat, 2021]
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Extension 2: semilinear wave equation

ytt = yxx + f (y), (t, x) ∈ R∗+ × (0, L)

y(t, 0) = 0, t ≥ 0

yx(t, L) = u(t), t ≥ 0

y(0, x) = y0(x), x ∈ (0, L)

yt(0, x) = y1(x), x ∈ (0, L)

Control strategy:
1 preliminary (classical) velocity feedback;
2 spectral reduction-based design of a PI controller.

Result: Local PI regulation control of the left Neumann trace yx(t, 0) to
some prescribed constant reference r ∈ R.

[Lhachemi, Prieur, and Trélat, 2020]
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Conclusion

Boundary stabilization and regulation control of PDEs in the presence
of delays.

Spectral reduction-based methods can be efficient tools to achieve:

stabilization with delayed boundary control;
boundary stabilization in the presence of a state-delay;
PI regulation control.

Future lines of research:

robustness;
output feedback;
systems of PDEs;
etc.
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Stabilization of reaction diffusion equations with state delay using boundary control input
IEEE Transactions on Automatic Control, 61(12), 4041-4047.

E. Fridman (2006).

A new Lyapunov technique for robust control of systems with uncertain non-small delays.
IMA Journal of Mathematical Control and Information, 23(2), 165-179.

E. Fridman and Y. Orlov (2009).

Exponential stability of linear distributed parameter systems with time-varying delays
Automatica, 45(1), 194-201.

E. Fridman, S. Nicaise, and J. Valein (2010).

Stabilization of second order evolution equations with unbounded feedback with time-dependent delay
SIAM Journal on Control and Optimization, 48(8), 5028-5052.

W. Kang and E. Fridman (2017).

Boundary control of delayed ODE–heat cascade under actuator saturation
Automatica, 83, 252-261.

W. Kang and E. Fridman (2017).

Boundary constrained control of delayed nonlinear Schrödinger equation
IEEE Transactions on Automatic Control, 63(11), 3873-3880.

M. Krstic (2009)

Control of an unstable reaction–diffusion PDE with long input delay
Systems & Control Letters, 58(10-11), 773-782.

P. O. Lamare and N. Bekiaris-Liberis (2015)

Control of 2× 2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking
Systems & Control Letters, 86, 24-33.

H. Lhachemi Stabilization of delayed PDEs 11 July 2020 89 / 93



References

H. Lhachemi, C. Prieur, and R. Shorten (2019)

An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying
input delays
Automatica, 109, 108551.

H. Lhachemi, C. Prieur, and R. Shorten (2020)

Robustness of constant-delay predictor feedback with respect to distinct uncertain time-varying input delays
IFAC World Congress 2020.

H. Lhachemi, C. Prieur, and E. Trélat (2020)

Neumann trace tracking of a constant reference input for 1-D boundary controlled heat-like equations with delay
IFAC World Congress 2020.

H. Lhachemi, C. Prieur, and E. Trélat (2020)
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