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A function δ : R+ → R+ is:

– positive definite if it is continuous, zero at zero and δ(s) > 0
for all s > 0 (ex: s→ s

1+s2);

– of class K if it is positive definite and strictly increasing (ex:
s→ 1− e−s);

– of class K∞ if it is of class K and it is unbounded

(ex: s→ s2);

– of class L if it is continuous and it monotonically decreases
to zero as its argument tends to +∞ (ex: s→ e−s).

A function β : R+ × R+ → R+ is of class KL if β(·, t) is of class
K for each t ≥ 0 and β(s, ·) is of class L for each s ≥ 0

(ex: (s, t)→ se−t).
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For positive real ∆, positive integer n, C([−∆,0];Rn) denotes

the Banach space of the continuous functions mapping [−∆,0]

into Rn, endowed with the supremum norm, denoted with the

symbol ‖ · ‖∞.

The symbol ‖ · ‖a denotes any semi-norm in C([−∆,0];Rn) for

which there exist two positive reals γa and γa such that, for any

φ ∈ C([−∆,0];Rn), the following inequalities hold

γa|φ(0)| ≤ ‖φ‖a ≤ γa‖φ‖∞
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A functional V : C([−∆,0];Rn)→ R+ is Fréchet differentiable

at a point φ ∈ C([−∆,0];Rn), if there exists a linear bounded

operator, which is called the Fréchet differential at φ and is

denoted as DFV (φ), mapping C([−∆,0];Rn) into R, such that

lim
ψ→0

|V (φ+ ψ)− V (φ)−DFV (φ)ψ|
‖ψ‖∞

= 0

In the following:

• RFDE stands for Retarded Functional Differential Equation.

• NFDE stands for Neutral Functional Differential Equation.

• FDE stands for Functional Difference Equation.

• ISS stands for Input-to-State Stability, or Input-to-State Sta-

ble.
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ISS Definition (Sontag, 1989)

ẋ(t) = f(x(t), v(t)), a.e. x(t) ∈ Rn, v(t) ∈ Rm, x(0) = x0

(1)

(f locally Lipschitz)

Definition 1. The system described by (1) is ISS if there esixt

β ∈ KL and γ ∈ K such that, for any initial state x0 and any

Lebesgue measurable and locally essentially bounded input v,

the solution exists for all t ≥ 0 and, furthermore, satisfies the

inequality

|x(t)| ≤ β(|x0|, t) + γ(‖v[0,t)‖∞), t ≥ 0
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Liapunov Characterization of ISS

Sontag & Wang, SCL, 1995, Lin, Sontag, Wang, SICON, 1996

Theorem 2. The system described by the ODE (1) is ISS if and

only if there exist a smooth function V : Rn → R+, functions α1,

α2, α3 of class K∞, function ρ of class K, such that

H1) α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ Rn;

H2) ∂V (x)
∂x f(x, v) ≤ −α3(|x|) + ρ(|v|), ∀x ∈ Rn, v ∈ Rm
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ISS-ation (Sontag, 1989)

ẋ(t) = f(x(t)) + g(x(t))(u(t) + d(t))

Hp) u(t) = k(x(t)) is stabilizing when d ≡ 0, V : Rn → R+ is a

Liapunov function for ẋ(t) = f(x(t)) + g(x(t))k(x(t)), i.e.:

α1(|x|) ≤ V (x) ≤ α2(|x|), ∂V (x)
∂x (f(x) + g(x)k(x)) ≤ −α3(|x|);

Th) us(t) = k(x(t))−
[
∂V (x(t))
∂x(t) g(x(t))

]T
is ISS-ing, i.e.

ẋ(t) = f(x(t)) + g(x(t))(us(t) + d(t))

is ISS w.r.t. the disturbance d(t).
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Example (Sontag, 1989)

ẋ(t) = x(t) + (1 + x2(t))(u(t) + d(t))

If d(t) ≡ 0, then u(t) = − 2x(t)
1+x2(t)

is a stabilizing feedback control

law. Indeed, the closed-loop system becomes ẋ(t) = −x(t).

But, with this feedback control law, the closed-loop system is

described, in the case d(t) 6= 0, by the equation

ẋ(t) = −x(t) + (1 + x2(t))d(t),

and it can easy become unstable, for instance by suitable

constant disturbance d(t).
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Now, we consider a Liapunov function for the disturbance-free

closed loop system ẋ(t) = −x(t). We can choose V (x) = x2.

Then we have the new feedback control law

us(t) = −
2x(t)

1 + x2(t)
− 2x(t)

(
1 + x2(t)

)

The new closed-loop system becomes

ẋ(t) = −x(t)− 2x(t)
(
1 + x2(t)

)2
+
(
1 + x2(t)

)
d(t)

This system is ISS w.r.t. the disturbance d(t).
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Human Glucose-Insulin System. Delays occur because of the
reaction time of the pancreas to plasma-glucose variations.
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The beginning of ISS for time-delay systems

A.R. Teel, Connections between Razumikhin-type theorems and

the ISS nonlinear small gain theorem, IEEE Transactions on

Automatic Control, Vol. 43, No. 7, pp. 960–964, 1998.

P. Pepe, and Z.-P. Jiang, A Lyapunov-Krasovskii methodology

for ISS and iISS of time-delay systems, Systems & Control

Letters, Vol. 55, No. 12, pp. 1006–1014, 2006.

E. Fridman, M. Dambrine, N. Yeganefar, On input-to-state

stability of systems with time-delay: A matrix inequalities

approach, Automatica, Vol. 44, N. 9, pp. 2364-2369, 2008.
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Systems Described by RFDEs

ẋ(t) = f(xt, v(t)), t ≥ 0, a.e.,

x(τ) = x0(τ), τ ∈ [−∆,0], (2)

f : C([−∆,0];Rn)×Rm → Rn Lipschitz on bounded sets,

xt ∈ C([−∆,0];Rn), xt(τ) = x(t+ τ), τ ∈ [−∆,0]
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An example (recall xt(τ) = x(t+ τ), τ ∈ [−∆,0]):

ẋ(t) = x4(t)+x3(t−π)+x2(t−e)+x
(
t−
√

3
)
+
∫ t
t−
√

2
x5(s)ds+v(t)

(3)

Setting ∆ = π (maximum involved time delay), by equalities

x(t) = xt(0), x(t−π) = xt(−π), x(t−e) = xt(−e), x
(
t−
√

3
)

= xt
(
−
√

3
)
,

∫ t
t−
√

2
x5(s)ds =

∫ 0

−
√

2
x5(t+ τ)dτ =

∫ 0

−
√

2
x5
t (τ)dτ,

the system described by (3) can be rewritten in the form

ẋ(t) = f(xt, v(t)), where f : C([−∆,0];R)× R → R is defined,

for φ ∈ C([−∆,0];R), u ∈ R, as

f(φ, u) = φ4(0) +φ3(−π) +φ2(−e) +φ
(
−
√

3
)

+
∫ 0

−
√

2
φ5(s)ds+u
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Existence and Uniqueness of the Solution

Theorem 3. For any initial condition x0 ∈ C([−∆,0];Rn) and

any Lebesgue measurable and locally essentially bounded input

function u, the RFDE (2) admits a unique locally absolutely

continuous solution x(t) on a maximal time interval [0, b), 0 <

b ≤ +∞. If b < +∞, then the solution is unbounded in [0, b).
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Stability Definitions

Definition 4. Let in the RFDE (2) u(t) ≡ 0. The system

described by the RFDE (2) is said to be 0−GAS if there ex-

ist a function β of class KL such that, for any initial state

x0 ∈ C([−∆,0];Rn), the corresponding solution exists for all t ≥ 0

and, furthermore, satisfies the inequality

|x(t)| ≤ β(‖x0‖∞, t), ∀t ≥ 0 (4)

Definition 5. The system described by the RFDE (2) is said to

be ISS if there exist a function β of class KL and a function γ of

class K such that, for any initial state x0 ∈ C([−∆,0];Rn) and

any Lebesgue measurable, locally essentially bounded input v,

the corresponding solution exists for all t ≥ 0 and, furthermore,

satisfies

|x(t)| ≤ β(‖x0‖∞, t) + γ(‖v[0,t)‖∞), ∀t ≥ 0.
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Definition 6. Let V : C([−∆,0];Rn) → R+ be a continuous

functional. The derivative D+V : C([−∆,0];Rn) × Rm → R? of

the functional V is defined, in the Driver’s form (see Driver,

1962, Burton, 1985, Pepe & Jiang, 2006, Karafyllis, 2006), for

φ ∈ C([−∆,0];Rn), v ∈ Rm, as follows

D+V (φ, v) = lim sup
h→0+

1

h

(
V
(
φh,v

)
− V (φ)

)
, (5)

where, for h ∈ [0,∆), φh,v ∈ C([−∆,0];Rn) is given by

φh,v(s) =

{
φ(s+ h), s ∈ [−∆,−h),

φ(0) + f(φ, v)(h+ s), s ∈ [−h,0]
(6)
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Theorem 7. Let in the RFDE (2) u(t) = 0, t ≥ 0. The sys-

tem described by the RFDE (2) is 0−GAS if and only if there

exist a locally Lipschitz functional V : C([−∆,0];Rn) → R+

and functions α1, α2 of class K∞, α3 of class K, such that,

∀φ ∈ C([−∆,0];Rn), the following inequalities hold:

i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖∞);

ii) D+V (φ,0) ≤ −a3(|φ(0)|)
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Theorem 8. (Karafyllis, Pepe & Jiang, 2006, 2008) The system

described by the RFDE (2) is ISS if and only if there exist a

locally Lipschitz functional V : C([−∆,0];Rn) → R+, a semi-

norm ‖ · ‖a in C([−∆,0];Rn), functions α1, α2, α3 of class K∞, a

function ρ of class K such that:

i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a), ∀φ ∈ C;

ii) D+V (φ, d) ≤ −α3(‖φ‖a) + ρ(|d|), ∀ φ ∈ C, d ∈ Rm

• Recall that γa|φ(0)| ≤ ‖φ‖a ≤ γa‖φ‖∞
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Example of Copper Interconnections System for a Converter.

More Red Regions Correspond to Higher Currents. Modelled by

Partial Element Equivalent Circuits (PEECs).
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Partial Element Equivalent Circuits (here an example is
reported) describe electromagnetic problems, they are a circuit
interpretation of the Maxwell Equations, when the space is
suitably discretized. The electric and magnetic interactions do
happen at distances and with propagation times, since the
electromagnetic field propagates, at most, at the light speed.
Thus delays are involved, which, in a state space description,
affect both the state and its derivative (neutral-type systems).
See papers by A. Bellen, N. Guglielmi, A. Ruehli,
G. Antonini, X.-M. Zhang, Q.-L. Han, P. Pepe.
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NFDEs in Hale’s Form

d

dt
(Dxt) = f(xt, v(t)), t ≥ 0, a.e.,

x(τ) = x0(τ), τ ∈ [−∆,0], x0 ∈ C([−∆,0];Rn) (7)

where: x(t) ∈ Rn; v(t) ∈ Rm is the input, measurable

and locally essentially bounded, n,m are positive

integers; D : C([−∆,0];Rn) → Rn is a map defined, for

φ ∈ C([−∆,0];Rn), as

Dφ = φ(0)− q(φ); (8)

f , q Lipschitz on bounded sets.

So the equation (7) is read as follows

d

dt
(x(t)− q(xt)) = f(xt, v(t)), t ≥ 0, a.e. (9)
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FDEs

Hale, Martinez-Amores, Kolmanovskii, Myshkis, Verriest,

Rasvan, Niculescu, Fridman, Gu, Melchor-Aguilar, Pepe,

Karafyllis, Jiang

A time invariant FDE is an equation of the type

x(t) = g(xt, u(t)), t ≥ 0,

x(τ) = x0(τ), τ ∈ [−∆,0], x0 ∈ C([−∆,0];Rn),

u continuous,

g Lipschitz on bounded sets, independent of the first argument at 0.

(10)

Definition 9. (see Hale & Lunel, 1993) A map g : C([−∆,0];Rn)×
Rm → Rn is said to be independent of the first argument at 0 if

there exists a real c ∈ (0,∆] such that, for any v ∈ Rm and for any

φ1, φ2 ∈ C([−∆,0];Rn) satisfying φ1(τ) = φ2(τ), τ ∈ [−∆,−c],
the equality g(φ1, v) = g(φ2, v) holds.
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By the independence assumption, the FDE is not implicit, the

solution exists in R+. Assuming the matching condition

(x0(0) = g(x0, u(0))) (naturally satisfied by difference maps

involved in NFDEs in Hale’s form), the solution is continuous.



Definition 10. Let in the FDE (10) u(t) = 0 ∀t ≥ 0. The system

described by the FDE (10) is said to be 0−GAS if there exists

a function β of class KL such that, for any x0 ∈ C([−∆,0];Rn),

the corresponding solution satisfies the inequality

|x(t)| ≤ β(‖x0‖∞, t), ∀t ≥ 0 (11)

Definition 11. The system described by the FDE (10) is said

to be ISS, if there exist a function β of class KL and a function

γ of class K such that, for any x0 ∈ C([−∆,0];Rn) and any

continuous input signal u, satisfying the matching condition, the

corresponding solution satisfies

|x(t)| ≤ β(‖x0‖∞, t) + γ(‖u[0,t]‖∞), ∀t ≥ 0
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Let, for any continuous function w : [0, c] → Rm and any

φ ∈ C([−∆,0];Rn), satisfying the matching condition

φ(0) = g(φ,w(0)), φc,w ∈ C([−∆,0];Rn) be defined, for

s ∈ [−∆,0], as

φc,w(s) =

{
φ(s+ c), s ∈ [−∆,−c)

g(φ?s, w(s+ c)), s ∈ [−c,0],
(12)

where φ?s ∈ C([−∆,0];Rn) is defined, for θ ∈ [−∆,0], s ∈ [−c,0],

as

φ?s(θ) =

{
φ(θ + s+ c), θ ∈ [−∆,−c− s)

φ(0), θ ∈ [−c− s,0],
(13)
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Theorem 12. (Pepe, AUT, 2014) The system described by the

FDE (10), with u(t) = 0 ∀t ≥ 0, is 0−GAS if and only if there ex-

ists a continuous functional V : C([−∆,0];Rn) → R+, functions

α1, α2 of class K∞, a function α3 of class K, a semi-norm ‖ · ‖a
in C([−∆,0];Rn) such that, ∀φ ∈ C([−∆,0];Rn) : φ(0) = g(φ,0),

the inequalities hold:

i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a);

ii) V (φc,0)− V (φ) ≤ −α3(‖φ‖a)

Recall that γa|φ(0)| ≤ ‖φ‖a ≤ γa‖φ‖∞.
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Theorem 13. (Pepe, AUT, 2014) The system described by the

FDE (10) is ISS if and only if there exists a continuous functional

V : C([−∆,0];Rn)→ R+,

functions α1, α2, α3 of class K∞, a function σ of class K, a semi-

norm ‖·‖a in C([−∆,0];Rn) such that, for any φ ∈ C([−∆,0];Rn)

and any continuous function w : [0, c] → Rm, satisfying the

matching condition φ(0) = g(φ,w(0)), the inequalities hold:

i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a);

ii) V (φc,w)− V (φ) ≤ −α3(‖φ‖a) + σ(supτ∈[0,c] |w(τ)|)

Recall that γa|φ(0)| ≤ ‖φ‖a ≤ γa‖φ‖∞.
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d

dt
(Dxt) = f(xt, v(t)), t ≥ 0, a.e.,

x(τ) = x0(τ), τ ∈ [−∆,0], x0 ∈ C([−∆,0];Rn),

(14)

where: x(t) ∈ Rn; v(t) ∈ Rm is the input, measurable

and locally essentially bounded, n,m are positive

integers; D : C([−∆,0];Rn) → Rn is a map defined, for

φ ∈ C([−∆,0];Rn), as

Dφ = φ(0)− q(φ) (for xt, Dxt = x(t)− q(xt)); (15)

q, f Lipschitz on bounded sets, q independent of the first

argument at 0.
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Lemma 14. The following results hold:

1) there exist, unique, a continuous solution x(t) of the NFDE

in Hale’s form (14), on a maximal time interval [0, b), 0 <

b ≤ +∞;

2) the function t → x(t)− q(xt) is locally absolutely continuous

in [0, b);

3) if b < +∞, then the function t → x(t) − q(xt), t ∈ [0, b), is

unbounded in [0, b).
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Definition 15. (see Hale & Lunel, 1993, Kolmanovskii & Myshkis,

1999, Khalil, 2000) The system described by the NFDE (14),

with u(t) ≡ 0, is said to be 0-GAS if there exists a function β of

class KL such that, for any initial state ψ ∈ C([−∆,0];Rn), the

solution exists for all t ≥ 0 and, furthermore, it satisfies

|x(t)| ≤ β (‖ψ‖∞, t) (16)

Definition 16. (Sontag, 1989, Pepe, AUT, 2007) The system

described by the NFDE (14) is said to be input-to-state stable if

there exist a function β of class KL and a function γ of class K
such that, for any initial state ψ ∈ C([−∆,0];Rn) and any mea-

surable, locally essentially bounded input v, the solution exists

for all t ≥ 0 and, furthermore, it satisfies

|x(t)| ≤ β (‖ψ‖∞, t) + γ
(
‖v[0,t)‖∞

)
(17)
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For a locally Lipschitz functional V : C([−∆,0];Rn)→ R+, the
derivative of the functional V , D+V : C([−∆,0];Rn)×Rm → R?,
is defined for φ ∈ C([−∆,0];Rn), v ∈ Rm, as

D+V (φ, v) = lim sup
h→0+

1

h

(
V (φh,v)− V (φ)

)
, (18)

where: for 0 < h < ∆, φh,v ∈ C([−∆,0];Rn) is given by

φh,v(s) =


φ(s+ h), s ∈ [−∆,−h];

Dφ+ f(φ, v)(s+ h)−Dφ?s+h + φ(0),
s ∈ (−h,0];

(19)

for 0 < θ ≤ h, φ?θ ∈ C([−∆,0];Rn) is given by

φ?θ(s) =

{
φ(s+ θ), s ∈ [−∆,−θ];
φ(0), s ∈ (−θ,0]

(20)
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Theorem 17. (Pepe & Karafyllis, IJC, 2013) Consider the NFDE

(14), with the input signal v ≡ 0. Let there exist a positive

integer p, p reals ∆i ∈ (0,∆], i = 1,2, . . . , p and p matrices

Ai ∈ Rn×n, i = 1,2, . . . , p such that

Dφ = φ(0)−
p∑

k=1

Akφ(−∆k) (21)

Let the system described by the FDE

Dxt = 0, t ≥ 0,

x(τ) = x0(τ), τ ∈ [−∆,0], x0 ∈ C([−∆,0];Rn),

(22)

be strongly stable (see Hale & Lunel, 1993). Then, the system

described by the NFDE (14) is 0-GAS if and only if there exist

a locally Lipschitz functional V : C([−∆,0];Rn)→ R+, functions

α1, α2 of class K∞, and a function α3 of class K such that,

∀ φ ∈ C([−∆,0];Rn):

H1) α1 (|Dφ|) ≤ V (φ) ≤ α2 (‖φ‖∞) ;

H2) D+V (φ,0) ≤ −α3 (|Dφ|) (23)
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Theorem 18. (Pepe, Karafyllis & Jiang, SCL, 2017) Consider

the NFDE (14). Let the system described by the FDE

Dxt = v(t), t ≥ 0,

x(τ) = x0(τ), τ ∈ [−∆,0], x0 ∈ C([−∆,0];Rn),

(24)

be ISS with respect to the continuous input signal v(t). Then,

the system described by the NFDE (14) is ISS if and only if

there exist a locally Lipschitz functional V : C([−∆,0];Rn) →
R+, functions α1, α2, α3 and γa of class K∞, a functional Na :

C([−∆,0];Rn)→ R+, and a function ρ of class K such that:

H1) α1 (|Dφ|) ≤ V (φ) ≤ α2 (Na(φ)) , ∀ φ ∈ C([−∆,0];Rn);

H2) Na(φ) ≤ γa(‖φ‖∞), ∀ φ ∈ C([−∆,0];Rn);

H3) D+V (φ, u) ≤ −α3 (Na(φ)) + ρ(|u|), ∀ φ ∈ C([−∆,0];Rn), u ∈ Rm
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Retarded, Control-Affine, Nonlinear Systems

ẋ(t) = f(xt) + g(xt)v(t), t ≥ 0, a.e.,

x(τ) = ξ0(τ), τ ∈ [−∆,0], (25)

xt ∈ C([−∆,0];Rn), xt(τ) = x(t+ τ)
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ISS-ation w.r.t. the Actuator Disturbance

ẋ(t) = f(xt) + g(xt)(u(t) + d(t)), t ≥ 0, a.e.,

x(τ) = ξ0(τ), τ ∈ [−∆,0], (26)

x(t) ∈ Rn, u(t) ∈ Rm control input, d(t) ∈ Rm unknown

disturbance, supposed Lebesgue measurable and locally

essentially bounded.

PROBLEM: given a state feedback k(xt) such that

ẋ(t) = f(xt) + g(xt)k(xt) is 0-GAS, find a new state feedback

k(xt)+p(xt) such that ẋ(t) = f(xt) + g(xt)(k(xt)+p(xt)+d(t)) is

ISS w.r.t. d(t).

37



For given φ ∈ C([−∆,0];Rn), h ∈ [0,∆), let

φ
g
h ∈ C([−∆,0];Rn×m) be defined as

φ
g
h(s) =

{
0 s ∈ [−∆,−h)

(s+ h)g(φ) s ∈ [−h,0]
(27)

38



Theorem for ISS-ation

Pepe, TAC, 2009

Hp) There exist a Lipschitz on bounded sets functional

k : C([−∆,0];Rn)→ Rm,

a continuously Fréchet differentiable functional

V : C([−∆,0];Rn)→ R+,

functions α1, α2 and α3 of class K∞, such that, along the
solutions of the unforced (disturbance equal to zero) closed
loop system (26) with u(t) = k(xt), described by

ẋ(t) = f(xt) + g(xt)k(xt), (28)

the following inequalities hold:

i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a); ii) D+V (φ) ≤ −α3(‖φ‖a)
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Th) The feedback control law

u(t) = k(xt) + p(xt), (29)

with p =
[
p1 p2 . . . pm

]T
: C([−∆,0];Rn) → Rm defined

as

pi(φ) = − lim sup
h→0+

DFV (φ)
1

h
φ
g
h ei, (30)

ei being the canonical basis in Rm, is such that the closed

loop system (26), (29), described by

ẋ(t) = f(xt) + g(xt)k(xt) + g(xt)p(xt) + g(xt)d(t), (31)

is input-to-state stable with respect to the measurable and

locally essentially bounded disturbance d(t), provided that the

functional p is Lipschitz on bounded sets of C([−∆,0];Rn).
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briefly...

ẋ(t) = f(xt) + g(xt)(u(t) + d(t)), (32)

Hp) u(t) = k(xt) is stabilizing in the unforced case (d(t) = 0), V
is a L-K functional for ẋ(t) = f(xt) + g(xt)k(xt)

Th) For pi(φ) = − lim suph→0+ DFV (φ) 1
h φ

g
h ei,

u(t) = k(xt)+p(xt)

is input-to-state stabilizing, i.e

ẋ(t) = f(xt) + g(xt)(k(xt) + p(xt) + d(t))

is ISS w.r.t. d(t).
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Disturbance Attenuation

|x(t)| ≤ β(‖ξ0‖∞, t) + γ(‖d[0,t)‖∞)

γ(s) = α−1
1 ◦ α2 ◦ α−1

3

(
s2

3

)

If, instead of V , we choose ωV , with ω a positive real, then

γ(s) = α−1
1 ◦ α2 ◦ α−1

3

(
s2

3 ω

)

The disturbance can be arbitrarily attenuated. Price to pay:
p(xt) becomes ωp(xt) (i.e., increased control effort).
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The case with saturated input and equations with discontinuous

right-hand side is investigated in Pepe & Ito, TAC 2012.

Invariantly differentiable functionals (Kim, 1997) are used.

Small-gain theory for ISS and integral ISS (iISS) of

interconnected systems with delays can be found in

• Karafyllis & Jiang, SIAM, 2007

• Ito, Pepe & Jiang, AUT, 2010

• Ito, Jiang & Pepe, AUT, 2012

• Dashkovskiy, Kosmykov, Mironchenko & Naujok, NAHS, 2012
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CSTR Model, Luyben 2007, Wu, 1999

dCA(t)

dt
=

F

VR
(φCA0 + (1− φ)CA(t−∆)− CA(t))

−CA(t)k0e
−E

RTR(t)

dTR(t)

dt
=

F

VR
(φT0 + (1− φ)TR(t−∆)− TR(t))

−
λCA(t)k0e

−E
RTR(t)

ρcp
−
UAJ(TR(t)− TJ(t))

VRρcp
dTJ(t)

dt
=
FJ(t)

VJ
(TC,in − TJ(t)) +

UAJ(TR(t)− TJ(t))

VJρJcJ
(33)

FJ(t) = u(t) + d(t)
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In the case the disturbance is not present (d(t) ≡ 0), a

stabilizing feedback control law

u(t) = k((TR)t, (CA)t, (TJ)t)

is found by tools of differential geometry for time-delay systems

(Germani, Manes, Pepe, Oguchi, Watanabe, Nakamizo,

Marquez-Martinez, Moog). The closed-loop system (with

u = k) becomes

Ė(t) =

 0
0
1

N(E1(t)) +


0 0 0
0 0 0
0 0 F

VR
(1−Φ)

E(t−∆)

+


AB +BBK

0
0

0 0 − F
VR
− k0e

−E
R(E1(t)+TR,eq)

E(t)

+


0

UAJ(TC,in−F(E(t), E(t−∆)))
VJVRρcp

0

 d(t) (34)
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A functional V by which the asymptotic stability of the

unforced (d(t) ≡ 0) closed loop system can be proved, its

Fréchet Differential and the related ISS-ing term p in the

control law are the following (φ, ψ, φgh ∈ C([−∆,0];R3), (Pepe &

Di Ciccio, IJRNC 2011)

V (φ) = φT (0)Pφ(0) +
∫ 0

−∆
φT (τ)

(
−
τ

∆
Q1 +

τ + ∆

∆
Q2

)
φ(τ)dτ

DFV (φ)ψ = 2φT (0)Pψ(0) + 2
∫ 0

−∆
φT (τ)

(
−
τ

∆
Q1 +

τ + ∆

∆
Q2

)
ψ(τ)dτ

DFV (φ)
1

h
φ
g
h =

1

h
2φT (0)Phg(φ)

+
1

h
2
∫ 0

−h
φT (τ)

(
−
τ

∆
Q1 +

τ + ∆

∆
Q2

)
(τ + h)g(φ)dτ

p(φ) = −2φT (0)Pg(φ)
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p((TR)t, (CA)t, (TJ)t) =

−2



TR(t)− TR,eq

F
VR

(φT0 + (1− φ)TR(t−∆)− TR(t))

−λCA(t)k0e
−E

RTR(t)

ρcp
− UAJ(TR(t)−TJ(t))

VRρcp

CA(t)− CA,eq



T

·

P



0

UAJ(TC,in−TJ(t))
VJVRρcp

0

 (35)
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u(t) = k((TR)t, (CA)t, (TJ)t)

stabilizes (locally) the unforced (d(t) ≡ 0) system.

u(t) = k((TR)t, (CA)t, (TJ)t) + p((TR)t, (CA)t, (TJ)t)

input-to-state stabilizes locally the system with respect to the

unknown disturbance d(t) adding to the control input, with

significant disturbance effect attenuation.

In the following simulations

d(t) = 0.2FJ,eq + 0.4FJ,eqcos(0.001t)

49



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

338

339

340

341

342

343

344

secs

K

Reactor Temperature, u = k

50



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

338

339

340

341

342

343

344

secs

K

Reactor Temperature, u = k + p

51



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

secs

m
3
/s

e
c

Control Signal, u = k + p

52



Conclusions

- Liapunov-Krasovskii Characterizations of ISS for systems de-
scribed by RFDEs, FDEs, NFDEs have been presented.

- Formulas for the input-to-state stabilization of retarded non-
linear systems are provided, by means of Fréchet differen-
tiable functionals.

- Such formulas extend the ones given by Sontag in 1989 for
delay-free nonlinear systems.

- This theoretical result has been applied to the model of a
continuous stirred tank reactor, showing the high perfor-
mance of the re-designed control law, as far as the atten-
uation of the actuator disturbance effect is concerned.
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Recent Developments

Sontag’s formula for the input-to-state stabilization of nonlinear

RFDEs and NFDEs has been investigated in Pepe, SCL 2013,

2016.

Robustification of sampled-data stabilizers for RFDEs, by

means of ISS redesign with Lyapunov-Krasovskii functionals,

has been investigated in Di Ferdinando & Pepe, AUT, 2017.
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